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Learning Complex Spectral Mapping With Gated
Convolutional Recurrent Networks for

Monaural Speech Enhancement
Ke Tan , Student Member, IEEE, and DeLiang Wang , Fellow, IEEE

Abstract—Phase is important for perceptual quality of speech.
However, it seems intractable to directly estimate phase spectra
through supervised learning due to their lack of spectrotempo-
ral structure in it. Complex spectral mapping aims to estimate
the real and imaginary spectrograms of clean speech from those
of noisy speech, which simultaneously enhances magnitude and
phase responses of speech. Inspired by multi-task learning, we
propose a gated convolutional recurrent network (GCRN) for
complex spectral mapping, which amounts to a causal system for
monaural speech enhancement. Our experimental results suggest
that the proposed GCRN substantially outperforms an existing
convolutional neural network (CNN) for complex spectral mapping
in terms of both objective speech intelligibility and quality. More-
over, the proposed approach yields significantly higher STOI and
PESQ than magnitude spectral mapping and complex ratio mask-
ing. We also find that complex spectral mapping with the proposed
GCRN provides an effective phase estimate.

Index Terms—Complex spectral mapping, gated convolutional
recurrent network, phase estimation, monaural speech
enhancement.

I. INTRODUCTION

S PEECH signals are distorted by background noise in daily
listening environments. Such distortions severely degrade

speech intelligibility and quality for human listeners, and make
many speech-related tasks, such as automatic speech recognition
and speaker identification, more difficult. Speech enhancement
aims to remove or attenuate background noise from a speech
signal. It is fundamentally challenging if the speech signal is
captured by a single microphone at low signal-to-noise ratios
(SNRs). This study focuses on monaural (single-channel) speech
enhancement.

Monaural speech enhancement has been extensively studied
in the speech processing community in the last decades. Inspired
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by the concept of time-frequency (T-F) masking in computa-
tional auditory scene analysis (CASA), speech enhancement has
been formulated as supervised learning in recent years [36]. For
supervised speech enhancement, a proper selection of the train-
ing target is important [38]. On one hand, a well-defined training
target can substantially improve both speech intelligibility and
quality. On the other hand, the training target should be amenable
to supervised learning. Many training targets have been devel-
oped in the T-F domain, and they mainly fall into two groups.
One group is masking-based targets such as the ideal ratio mask
(IRM) [38], which define the time-frequency relationships be-
tween clean speech and noisy speech. Another is mapping-based
targets such as the log-power spectrum (LPS) [44] and the
target magnitude spectrum (TMS) [20], [12], which represent
the spectral features of clean speech.

Most of these training targets operate on the magnitude spec-
trogram of noisy speech, which is computed from a short-time
Fourier transform (STFT). Hence, typical speech enhancement
systems enhance only the magnitude spectrogram and simply
use the noisy phase spectrogram to resynthesize the enhanced
time-domain waveform. The reason for not enhancing the phase
spectrogram is two-fold. First, it was found that no clear structure
exists in the phase spectrogram, which renders it intractable to
directly estimate the phase spectrogram of clean speech [43].
Second, it was believed that phase enhancement is not im-
portant for speech enhancement [37]. A more recent study by
Paliwal et al. [23], however, shows that accurate phase esti-
mation can considerably improve both objective and subjective
speech quality, especially when the analysis window for phase
spectrum computation is carefully selected. Subsequently, var-
ious phase enhancement algorithms have been developed for
speech separation. Mowlaee et al. [21] estimated the phase
spectra of two sources in a mixture by minimizing the mean
squared error (MSE). Krawczyk and Gerkmann [17] performed
phase enhancement over voiced-speech frames while leaving
unvoiced frames unaltered. Kulmer et al. [18] estimated the
clean speech phase via the phase decomposition of the instanta-
neous noisy phase spectrum, followed by temporal smoothing.
Objective speech quality improvements are achieved by these
phase enhancement methods. Alternatively, phase information
can be incorporated into T-F masking. Wang and Wang [39]
trained a deep neural network (DNN) to directly reconstruct
the time-domain enhanced signal using the noisy phase through
an inverse Fourier transform layer. The results show that joint
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training of speech resynthesis and mask estimation improves
perceptual quality while maintaining objective intelligibility.
Another approach is the phase-sensitive mask (PSM) [5], which
incorporates the phase difference between clean speech and
noisy speech. The experimental results show that PSM esti-
mation yields higher signal-to-distortion ratio (SDR) than only
enhancing the magnitude spectrum.

Williamson et al. [43] observed that, whereas phase spec-
trogram lacks spectrotemporal structure, both real and imagi-
nary components of the clean speech spectrogram exhibit clear
structure and thus are amenable to supervised learning. Hence
they designed the complex ideal ratio mask (cIRM), which can
reconstruct clean speech from noisy speech. In their experi-
ments, a DNN is employed to jointly estimate the real and
imaginary spectra. Unlike the algorithms in [21], [17] and [18],
cIRM estimation can enhance both the magnitude and phase
spectra of noisy speech. The results show that complex ratio
masking (cRM) yields better perceptual quality over IRM esti-
mation while achieving slight or no improvement in objective
intelligibility. Subsequently, Fu et al. [6] employed a convo-
lutional neural network (CNN) to estimate the clean real and
imaginary spectra from the noisy ones. The estimated real and
imaginary spectra are then used to reconstruct the time-domain
waveform. Their experimental results show that the CNN leads
to a 3.1% improvement in short-time objective intelligibility
(STOI) [29] and a 0.12 improvement in perceptual evaluation
of speech quality (PESQ) [28] over a DNN. Moreover, they
trained a DNN to map from the noisy LPS features to the clean
ones. Their experimental results show that complex spectral
mapping using a DNN yields a 2.4% STOI improvement and
a 0.21 PESQ improvement over LPS spectral mapping using the
same DNN.

In the last decade, supervised speech enhancement has ben-
efited immensely from the use of CNNs and recurrent neural
networks (RNNs). In [42], [41], [40] and [5], RNNs with long
short-term memory (LSTM) are employed to perform speech
enhancement. More recently, Chen et al. [1] proposed an RNN
with four hidden LSTM layers to address speaker generaliza-
tion of noise-independent models. They found that the RNN
generalizes well to untrained speakers, and significantly out-
performs a feedforward DNN in terms of STOI. In addition,
CNNs have also been used for mask estimation and spectral
mapping [7], [25], [11], [31]. In [25], Park et al. utilize a con-
volutional encoder-decoder network (CED) to perform spectral
mapping. The CED achieves comparable denoising performance
to a DNN and an RNN, while having much fewer trainable pa-
rameters. Grais et al. [11] proposed a similar encoder-decoder ar-
chitecture. More recently, we proposed a gated residual network
based on dilated convolutions, which has large receptive fields
and thus can leverage long-term contexts [31]. Convolutional re-
current networks (CRNs) benefit from the feature extraction ca-
pability of CNNs and the temporal modeling capability of RNNs.
Naithani et al. [22] devised a CRN by successively stacking
convolutional layers, recurrent layers and fully connected layers.
A similar CRN architecture was developed in [46]. Recently, we
integrated a CED and LSTMs into a CRN, which amounts to a
causal system [32]. Moreover, Takahashi et al. [30] developed

a CRN that combines convolutional layers and recurrent layers
at multiple low scales.

In a preliminary study, we recently proposed a novel CRN
to perform complex spectral mapping for monaural speech en-
hancement [33]. This CRN was based on the architecture in [32].
Compared with the CNN in [6], the CRN yields higher STOI and
PESQ, and is more computationally efficient. In this study, we
further develop the CRN architecture and investigate complex
spectral mapping for monaural speech enhancement. Our ex-
tensions to [33] include the following. First, each convolutional
or deconvolutional layer is replaced by a corresponding gated
linear unit (GLU) block [4]. Second, we add a linear layer on top
of the last deconvolutional layer to predict the real and imaginary
spectra.

The rest of this paper is organized as follows. In Section II, we
introduce monaural speech enhancement in the STFT domain.
In Section III, we describe our proposed approach in detail.
Experimental setup is provided in Section IV. In Section V, we
present and discuss experimental results. Section VI concludes
this paper.

II. MONAURAL SPEECH ENHANCEMENT IN THE STFT DOMAIN

Given a single-microphone mixture y, monaural speech en-
hancement aims to separate target speech s from background
noise n. A noisy mixture can be modeled as

y[k] = s[k] + n[k], (1)

where k is the time sample index. Taking the STFT on both
sides, we obtain

Ym,f = Sm,f +Nm,f , (2)

whereY ,S andN represent the STFT of y, s andn, respectively,
and m and f index the time frame and the frequency bin,
respectively. In polar coordinates, Eq. (2) becomes

|Ym,f | eiθYm,f = |Sm,f | eiθSm,f + |Nm,f | eiθNm,f , (3)

where | · | denotes the magnitude response and θ· the phase
response. The imaginary unit is represented by ‘i’. The target
magnitude spectrum (TMS) of clean speech (i.e. |Sm,f |) is
a commonly-used training target in typical spectral mapping
based approaches [20], [12]. In these approaches, a mapping
from noisy features such as the noisy magnitude |Ym,f | to the
target magnitude is learned. The estimated magnitude |Ŝm,f | is
then combined with the noisy phase θYm,f

to resynthesize the
waveform. Fig. 1(a) depicts the phase spectrogram of a speech
signal, where the phase values are wrapped into the range of
(−π, π]. With the wrapping, the phase spectrogram looks rather
random. An unwrapped version of the phase spectrogram leads
to a smoother phase plot in Fig. 1(b), where the phase values
are corrected by adding multiples of ±2π when absolute phase
jumps between consecutive T-F units are greater than or equal
to π. One can observe that both plots exhibit no clear structure.
Therefore, it would be intractable to directly estimate the phase
spectrum through supervised learning.

From an alternative perspective, the STFT of a speech signal
can be expressed in Cartesian coordinates. Hence, Eq. (2) can
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Fig. 1. (Color Online). Illustration of phase, magnitude, real, and imaginary
spectrograms of a speech signal. The magnitude, as well as the absolute values
of the real and imaginary spectrograms, is plotted on a log scale.

be rewritten into
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where the superscripts (r) and (i) indicate real and imaginary
components, respectively. In [43], the cIRM is defined as
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where the indices m and f are omitted for simplicity. The
enhanced spectrogram can be derived by applying an estimate
of the cIRM M̂ to the noisy spectrogram:

S = M̂ × Y, (6)

where the multiplication ‘ × ’ above is a complex operator.
Additionally, we extend signal approximation (SA) [15]. SA

performs masking by minimizing the difference between the
spectral magnitude of clean speech and that of estimated speech.
The loss for cRM-based signal approximation (cRM-SA) is
defined as:

SA = |cRM × Y − S|2 , (7)

where | · | represents the complex modulus, i.e. the absolute
value of a complex number.

As shown in Fig. 1(d) and 1(e), both real and imaginary
spectrograms exhibit clear spectrotemporal structure, akin to
the magnitude spectrogram Fig. 1(c) and thus amenable to
supervised learning. Therefore, we propose to learn the spectral
mapping directly from the real and imaginary spectra of noisy
speech (i.e. Y (r) and Y (i)) to those of clean speech (i.e. S(r) and
S(i)), as in [6]. Subsequently, the estimated real and imaginary
spectra are combined to recover the time-domain signal.

It should be noted that Williamson et al. [43] claimed that
directly predicting the real and imaginary components of the
STFT via a DNN is not effective. However, we find that complex
spectral mapping consistently outperforms magnitude spectral
mapping, complex ratio masking, and complex ratio masking
based signal approximation in both STOI and PESQ metrics,
with a well-designed neural network architecture. For conve-
nience, we refer to the training target used in complex spectral
mapping, i.e. S(r) and S(i), as the target complex spectrum
(TCS).

III. SYSTEM DESCRIPTION

A. Convolutional Recurrent Network

In [32], we have developed a convolutional recurrent net-
work, which is essentially an encoder-decoder architecture with
LSTMs between the encoder and the decoder. Specifically, the
encoder comprises five convolutional layers, and the decoder
five deconvolutional layers. Between the encoder and the de-
coder, two LSTM layers model temporal dependencies. The
encoder-decoder structure is designed in a symmetric way: the
number of kernels progressively increases in the encoder and
decreases in the decoder. To aggregate the context along the
frequency direction, a stride of 2 is adopted along the frequency
dimension in all convolutional and deconvolutional layers. In
other words, the frequency dimensionality of feature maps is
halved layer by layer in the encoder and doubled layer by layer
in the decoder, which ensures that the output has the same
shape as the input. Additionally, skip connections are utilized
to concatenate the output of each encoder layer to the input of
the corresponding decoder layer. In the CRN, all convolutions
and deconvolutions are causal, so that the enhancement system
does not use future information. Fig. 2 illustrates the CRN archi-
tecture in [32] for spectral mapping in the magnitude domain.

B. Gated Linear Units

Gating mechanisms control the information flows throughout
the network, which potentially allows for modeling more sophis-
ticated interactions. They were first developed for RNNs [14]. In
a recent study [34], Van den Oord et al. adopted an LSTM-style
gating mechanism for the convolutional modeling of images,
which led to a masked convolution:

y = tanh(x ∗W1 + b1)� σ(x ∗W2 + b2)

= tanh(v1)� σ(v2), (8)
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Fig. 2. Illustration of the CRN for spectral mapping in [32]. The CRN
comprises three modules: An encoder module, an LSTM module, and a decoder
module. ‘Conv’ denotes convolution and ‘Deconv’ deconvolution.

where v1 = x ∗W1 + b1 and v2 = x ∗W2 + b2. W’s and
b’s denote kernels and biases, respectively, and σ the sigmoid
function. Symbols ∗ and � represent convolution operation and
element-wise multiplication, respectively. The gradient of the
gating is

∇[tanh(v1)� σ(v2)] = tanh′(v1)∇v1 � σ(v2)

+ σ′(v2)∇v2 � tanh(v1), (9)

where tanh′(v1), σ
′(v2) ∈ (0, 1), and the prime symbol denotes

differentiation. The gradient gradually vanishes as the network
depth increases due to the downscaling factors tanh′(v1) and
σ′(v2). To mitigate this problem, Dauphin et al. [4] introduced
GLUs:

y = (x ∗W1 + b1)� σ(x ∗W2 + b2)

= v1 � σ(v2). (10)

The gradient of the GLUs

∇[v1 � σ(v2)] = ∇v1 � σ(v2) + σ′(v2)∇v2 � v1 (11)

includes a path ∇v1 � σ(v2) without downscaling, which can
be regarded as a multiplicative skip connection that facilitates
the gradients to flow through layers. A convolutional GLU block
(denoted as “ConvGLU”) is illustrated in Fig. 3(a). A deconvo-
lutional GLU block (denoted as “DeconvGLU”) is analogous,
except that the convolutional layers are replaced by deconvolu-
tional layers, as shown in Fig. 3(b).

C. Model Complexity Reduction via a Grouping Strategy

Model efficiency is important for many real-world applica-
tions. Mobile phone applications, for example, require real-time
processing with low latency. In these applications, high compu-
tational efficiency and a small memory footprint are necessary.
Gao et al. [9] have recently proposed a grouping strategy to
improve the efficiency of recurrent layers while maintaining
their performance. This grouping strategy is illustrated in Fig. 4.
In a recurrent layer, both the input features and the hidden states
are split into disjoint groups, and intra-group features are learned

Fig. 3. Diagrams of a convolutional GLU block and a deconvolutional GLU
block, where σ denotes a sigmoid function.

Fig. 4. (Color Online). Illustration of the grouping strategy for RNNs.

separately within each group, as shown in Fig. 4(b). The group-
ing operation substantially reduces the number of inter-layer
connections and thus the model complexity. The inter-group
dependency, however, cannot be captured. In other words, an
output only depends on the input in the corresponding fea-
ture group, which may significantly degrade the representation
power. To alleviate this problem, a parameter-free representation
rearrangement layer between two successive recurrent layers is
employed to rearrange the features and hidden states, so that
the inter-group correlations are recovered (Fig. 4(c)). In order
to elevate the model efficiency, we adopt this grouping strategy
for the LSTM layers in our model. We find that this strategy
improves the enhancement performance with a proper group
number.

D. Network Architecture

This study extends the CRN architecture in [32] (see Fig. 2)
to perform complex spectral mapping. The resulting CRN ad-
ditionally incorporates GLUs and thus amounts to a gated
convolutional recurrent network (GCRN). Fig. 5 depicts our



384 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

Fig. 5. Network architecture of the proposed GCRN for complex spectral
mapping. More details are provided in Table I.

proposed GCRN architecture. Note that the real and imaginary
spectrograms of noisy speech are treated as two different input
channels as in [6]. As shown in Fig. 5, the encoder module
and the LSTM module are shared across the estimates of real
and imaginary components, while two distinct decoder modules
are employed to estimate real and imaginary spectrograms,
respectively. The design of such an architecture is inspired by
multi-task learning [19], [45], in which multiple related predic-
tion tasks are jointly learned with information shared across the
tasks. For complex spectral mapping, the estimation of the real
component and that of the imaginary component can be con-
sidered as two related subtasks (see [43]). Therefore, parameter
sharing is expected to achieve a regularization effect between the
subtasks, which may lead to better generalization. Moreover, the
learning may be encouraged by parameter sharing, particularly
when two subtasks are highly correlated. On the other hand,
excessive parameter sharing between subtasks could discourage
the learning, especially when the two subtasks are weakly cor-
related. Therefore, the proper choice of parameter sharing may
be important for the performance. In [33], we investigated four

TABLE I
PROPOSED GCRN ARCHITECTURE, WHERE T DENOTES THE NUMBER

OF TIME FRAMES IN THE SPECTROGRAM

different parameter sharing mechanisms. Among them, sharing
the encoder module and the LSTM module while not sharing
the decoder module leads to the best performance.

In this study, we assume that all signals are sampled at 16 kHz.
A 20-ms Hamming window is utilized to produce a set of time
frames, with a 50% overlap between adjacent time frames. We
use 161-dimensional spectra, which corresponds to a 320-point
STFT (16 kHz × 20 ms).

Table I provides details of our proposed network architecture.
The input size and the output size of each layer are given in
the featureMaps× timeSteps× frequencyChannels for-
mat. In addition, the layer hyperparameters are specified in
the (kernelSize, strides, outChannels) format. Note that the
number of feature maps in each decoder layer is doubled by
skip connections. Rather than using the kernel size of 2 × 3
(time× frequency) in [32], we use the kernel size of 1 × 3,
which we found does not degrade the performance. Each convo-
lutional or deconvolutional GLU block is successively followed
by a batch normalization [16] operation and an exponential linear
unit (ELU) [3] activation function. A linear layer is stacked on
top of each decoder to project the learned features to the real or
imaginary spectrograms.

IV. EXPERIMENTAL SETUP

A. Data Preparation

In our experiments, we evaluate the proposed models on the
WSJ0 SI-84 training set [26] which includes 7138 utterances
from 83 speakers (42 males and 41 females). We set aside
six (3 males and 3 females) of these speakers untrained for
testing. In other words, we train the models with 77 remaining
speakers. Of the utterances from the 77 training speakers, we
hold out 150 randomly selected utterances to create a validation
set with a factory noise (called “factory1”) from the NOISEX-92
dataset [35] at −5 dB SNR. For training, we use 10,000 noises
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from a sound effect library (available at https://www.sound-
ideas.com), which has the total duration of about 126 hours.
For testing, we use two highly nonstationary noises, i.e. babble
(“BAB”) and cafeteria (“CAF”), from an Auditec CD (available
at http://www.auditec.com).

Our training set contains 320,000 mixtures, and its total
duration is about 500 hours. Specifically, to create a training
mixture, we mix a randomly selected training utterance with
a random segment from the 10,000 training noises. The SNR
is randomly sampled from {−5, −4, −3, −2, −1, 0} dB. Our
test set comprises 150 mixtures that are created from 25 × 6
utterances of the 6 untrained speakers. We use three SNRs for
the test set, i.e. −5, 0 and 5 dB.

B. Baselines and Training Methodology

We compare our proposed approach with five baselines. We
first train a CRN to map from the magnitude spectrogram of
noisy speech to those of clean speech [32] (denoted as “CRN
+ TMS”). The estimated magnitude is combined with noisy
phase to resynthesize the waveform. In the second baseline
(denoted as “CRN-RI + TMS”), the same CRN is employed to
map from the real and imaginary spectrograms of noisy speech
to the magnitude spectrogram of clean speech. Third, a CNN
is trained to perform complex spectral mapping as in [6]. It
has four convolutional layers with 50 kernels and the kernel
size of 1 × 25, followed by two fully connected layers with
512 units in each layer. Parametric rectified linear units (PRe-
LUs) [13] are employed in all layers except for the output layer.
In the output layer, 322 (161 × 2) units with linear activations
are used to predict the real and imaginary spectra. Fourth, we
train our proposed GCRN to predict the cIRM. Note that the
real and imaginary components of the cIRM may have a large
range in (−∞,+∞), which may complicate cIRM estimation.
Therefore, we compress the cIRM with the following hyperbolic
tangent as suggested in [43]:

O(x) = K
1− e−C·M(x)

1 + e−C·M(x)
, (12)

where x denotes r or i, indicating the real and imaginary
components, respectively. During inference, the estimate of the
uncompressed mask can be recovered as follows:

M̂ (x) = − 1

C
log

(
K − Ô(x)

K + Ô(x)

)
, (13)

where Ô(x) denotes the GCRN output. We set K=10 and C=0.1
as in [43]. Fifth, we train the same GCRN with the cRM-SA as
the training target.

The models are trained using the AMSGrad optimizer [27]
with a learning rate of 0.001. We use the mean squared error
(MSE) as the objective function. The minibatch size is set to 4
at the utterance level. Within a minibatch, all training samples
are padded with zeros to have the same number of time steps
as the longest sample. The best models are selected by cross
validation.

TABLE II
COMPARISONS OF DIFFERENT APPROACHES IN STOI AND

PESQ AT −5 dB SNR

TABLE III
COMPARISONS OF DIFFERENT APPROACHES IN STOI AND PESQ AT 0 dB SNR

TABLE IV
COMPARISONS OF DIFFERENT APPROACHES IN STOI AND PESQ AT 5 dB SNR

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Results and Comparisons

Comprehensive comparisons among different models and
training targets are shown in Tables II, III and IV for − dB,
0 dB and 5 dB SNR, respectively, in terms of STOI and PESQ.
The numbers represent the averages over the test samples in
each test condition. The best scores in each test condition are
highlighted by boldface. KS denotes the kernel size in the time
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direction and G the group number in the grouped LSTM layers.
Note that G = 1 means that grouping is not performed. We first
compare our proposed GCRN architecture with different group
numbers using the TCS as the training target, as shown in the
last four rows of Tables II, III and IV. It can be observed that
G = 1, G = 2, G = 4 and G = 8 yield similar results in terms of
both metrics, which suggests the effectiveness of the grouping
strategy.

Moreover, our proposed GCRN model substantially outper-
forms the CNN (KS = 1) in [6]. At −5 dB SNR, for example,
the proposed GCRN with G = 2 improves STOI by 13.14%
and PESQ by 0.47 over the CNN. With a kernel size of 1 ×
25, the CNN only captures the contexts along the frequency
direction, without learning temporal dependencies. In contrast,
our proposed GCRN accounts for both the frequency and tem-
poral contexts of speech. We investigate the effects of temporal
contexts for the CNN in [6] by simply using different kernel
sizes in the time direction. Specifically, we use four different
kernel sizes, i.e. 2 × 25, 3 × 25, 4 × 25 and 5 × 25, aside from
the original version (i.e. 1 × 25) in [6]. Note that these kernels
operate only on the current and past time frames, which amounts
to causal convolutions. With four convolutional layers, these
CNNs correspond to different temporal context window sizes of
5, 9, 13, and 17 frames, respectively. As shown in Tables II, III
and IV, a larger context window size yields higher STOI but
slight or no improvements in PESQ.

With the cRM-SA as the training target, our proposed GCRN
yields significantly better STOI and PESQ than the same GCRN
with the cIRM. Going from the cRM-SA to the TCS further
improves both metrics. Take, for example, the −5 dB SNR
case. The proposed GCRN (G = 1) with the cRM-SA yields
a 3.68% STOI improvement and a 0.09 PESQ improvement
compared with the estimated cIRM. An additional 2.28% STOI
improvement and an additional 0.08 PESQ improvement are
achieved by the estimated TCS.

We now compare spectral mapping in the magnitude domain
and the complex domain. As shown in Tables II, III and IV,
“CRN + TMS” and “CRN-RI + TMS” utilize the same model
and training targets, but different input features. Using the real
and imaginary spectra of noisy speech as the features yields
slightly better STOI and PESQ than using the noisy magnitude
spectra. Our proposed approach (denoted as “GCRN + TCS”),
which utilizes the TCS as the training target, significantly im-
proves STOI and PESQ over “CRN-RI + TMS”. For example,
“GCRN + TCS (G = 2)” improves STOI by 4.21% and PESQ
by 0.1 over “CRN-RI + TMS” at −5 dB SNR.

To further demonstrate the effectiveness of complex spectral
mapping, we additionally train two LSTM models with the TMS
and the TCS, respectively. Both LSTM models have four stacked
LSTM hidden layers with 1024 units in each layer, and a fully
connected layer is used to estimate the TMS and the TCS, with a
softplus activation function [10] and a linear activation function,
respectively. As shown in Tables II, III and IV, complex spectral
mapping produces consistently higher STOI and PESQ than
magnitude spectral mapping.

In addition, SNR improvements (ΔSNR) over the unpro-
cessed mixtures are shown in Fig. 6. One can observe that our

Fig. 6. ΔSNR in dB over the unprocessed mixtures for −5, 0 and 5 dB. The
approaches are (i) CRN + TMS [32], (ii) CRN-RI + TMS, (iii) GCRN + cIRM
(G = 1), (iv) GCRN + cRM-SA (G = 1), (v) CNN + TCS [6], (vi) GCRN +
TCS (G = 1), (vii) GCRN + TCS (G = 2), (viii) GCRN + TCS (G = 4) and
(ix) GCRN + TCS (G = 8).

Fig. 7. The numbers of trainable parameters (a) and floating-point fused
multiply-adds per time frame (b) in different models. The unit in both parts
is million. The models are (i) CRN [32], (ii) CNN [6], (iii) GCRN (G = 1),
(iv) GCRN (G = 2), (v) GCRN (G = 4) and (vi) GCRN (G = 8), respectively.

proposed approach produces larger SNR improvements than the
baselines, with which a more than 12 dB SNR improvement is
achieved at −5 dB. Fig. 7(a) shows the numbers of trainable
parameters in different models, and Fig. 7(b) the numbers of
floating-point fused multiply-adds that are performed to process
one time frame. With the grouping strategy, our proposed model
achieves higher efficiency than the CRN in [32], in terms of
both computational costs and memory consumption. The CNN
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Fig. 8. (Color Online). Illustration of the real (top) and imaginary (bottom) spectrograms of clean speech, noisy speech, enhanced speech by cRM, enhanced
speech by estimated cRM-SA, and enhanced speech by estimated TCS. The absolute values of the real and imaginary spectrograms are plotted on a log scale.

TABLE V
COMPARISONS OF THE PROPOSED APPROACH AND TIME-DOMAIN APPROACHES. HERE

√
INDICATES CAUSAL MODEL, AND ✗ INDICATES NONCAUSAL MODEL

in [6] has much fewer trainable parameters but higher compu-
tational costs than the CRN in [32]. With G � 4, our proposed
GCRN has a comparable number of parameters to the CNN,
but is considerably more efficient computationally. Moreover,
an example of spectrograms of clean speech, noisy speech, and
enhanced speech by the GCRN with the cIRM, the cRM-SA
and the TCS as training targets, are shown in Fig. 8. We can
see that some speech components are lost in the spectrogram of
enhanced speech by the estimated cIRMor cRM-SA. In contrast,
enhanced speech by the estimated TCS exhibits more similar
spectrotemporal modulation patterns to clean speech and less
distortion than the enhanced speech by the estimated cIRM or
cRM-SA.

We also compare our proposed approach with two recent
time-domain speech enhancement approaches: AECNN-SM
(autoencoder CNN with STFT magnitude loss) [24] and FCN
(fully convolutional network) [8]. Additionally, we train a non-
causal version of the GCRN (denoted as “Bi-GCRN”), where
the LSTM layers in the middle are replaced by bidirectional
LSTM layers accordingly. The comparisons are presented in
Table V, in which the numbers represent the averages over the
two test noises. We can see that, the GCRN improves STOI by
1.19% over the AECNN-SM at −5 dB, while the GCRN and the
AECNN-SM produce similar STOI at 0 dB and 5 dB. In terms
of PESQ, the AECNN-SM consistently outperforms the GCRN.
It should be noted that, the AECNN-SM approach uses a much
larger time frame size (i.e. 2048) than that in our approach (i.e.

Fig. 9. Illustration of phase error under different conditions.

320), which is likely beneficial to the AECNN-SM. It can be
also observed that our approach substantially outperforms the
FCN in both STOI and PESQ. Moreover, the Bi-GCRN yields
significantly higher STOI and PESQ than the GCRN. This is not
surprising as future frames clearly contain information useful for
speech enhancement.

B. Evaluation of Phase Estimation

The phase of a speech signal is degraded by background noise
if the noise has a different phase, as is the case in general. This
is illustrated in Fig. 9(a). The degradation becomes more severe
when the noise is dominant in the mixture (Fig. 9(b)). Therefore,
the phase error tends to be greater in lower SNR conditions. Thus
phase enhancement becomes important when the SNR is low.



388 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

TABLE VI
PHASE DISTANCES ON THE BABBLE NOISE AT DIFFERENT SNRS

TABLE VII
PHASE DISTANCES ON THE CAFETERIA NOISE AT DIFFERENT SNRS

Complex spectral mapping provides a phase estimate by
solving the following two equations with two unknowns:

Ŝ(r) =
∣∣∣Ŝ

∣∣∣ cos(θ̂S) (14)

Ŝ(i) =
∣∣∣Ŝ

∣∣∣ sin(θ̂S), (15)

where Ŝ(r) and Ŝ(i) are the network outputs. To evaluate the
estimated phase, we adopt two phase measures. The first is the
phase distance (PD) between the target spectrogram S and the
estimated spectrogram Ŝ, defined in [2]:

PD(S, Ŝ) =
∑
m,f

|Sm,f |∑
m,′f ′ |Sm,′f ′ |∠(Sm,f , Ŝm,f ), (16)

where∠(Sm,f , Ŝm,f ) ∈ [0◦, 180◦] represents the angle between
Sm,f and Ŝm,f . The phase distance can be regarded as a
weighted average of the angle between the corresponding T-F
units, where each T-F unit is weighted by the magnitude of the
target spectrogram to emphasize the relative importance of the
unit. The second measure quantifies the effects of the estimated
phase by comparing the time-domain signals resynthesized us-
ing three kinds of phases: the noisy phase, the estimated phase
and the clean phase. These phases are combined with three
different magnitudes: the noisy magnitude, the enhanced mag-
nitude by the CRN estimator in [32], and the clean magnitude.

We evaluate two estimated phases, which are calculated
from the spectrogram enhanced by our proposed approach (i.e.
“GCRN + TCS (G = 1)”) and from that by “GCRN + cIRM
(G = 1)”. Tables VI and VII present the phase distance between
clean and noisy spectrograms (PD(S, Y )) and between clean
and enhanced spectrograms (PD(S, Ŝ)) on the babble noise
and the cafeteria noise, respectively. The numbers represent the
means and the standard deviations of the test samples in each
test condition. One can observe that complex spectral mapping
improves the phase in every condition. On the cafeteria noise at
−5 dB, for example, the phase distance is improved by 8.246◦ on
average. Moreover, “GCRN+ TCS (G= 1)” yields consistently
better phases than “GCRN + cIRM (G = 1),” in terms of the
phase distance.

Comparisons of the signals resynthesized from the noisy
phase, the estimated phase, and the clean phase are presented
in Tables VIII, IX and X, respectively. As shown in Table VIII,
both the objective intelligibility and the perceptual quality are

improved by only enhancing the phase while keeping the noisy
magnitude unaltered. For example, the phase estimated by
“GCRN+TCS (G= 1)” improves STOI by 1.38% and PESQ by
0.12 over the noisy phase at −5 dB SNR. The clean phase yields
an additional 2.05% STOI improvement and an additional 0.1
PESQ improvement at −5 dB. From Table IX, we can observe
that enhancing the phase can further improve STOI and PESQ
over only enhancing the magnitude, especially in low-SNR
conditions (e.g. −5 dB) where phase is severely degraded.
With the clean magnitude, the estimated phases improve both
STOI and PESQ over the noisy phase, as shown in Table X.
In addition, the phase estimated by “GCRN + TCS (G = 1)”
produces consistently higher STOI and PESQ than the phase
estimated by “GCRN + cIRM (G = 1)”.

The above evaluations also suggest that the use of noisy
phase is a significant limitation of conventional approaches that
perform no phase enhancement. Our complex spectral mapping
provides an effective phase estimation and avoids the use of the
noisy phase.

VI. CONCLUSION

In this study, we have proposed a new framework for com-
plex spectral mapping using a convolutional recurrent network,
which learns to map from the real and imaginary spectrograms of
noisy speech to those of clean speech. It provides simultaneous
enhancement of magnitude and phase responses of noisy speech.
Inspired by multi-task learning, the proposed approach extends
a newly-developed CRN, and yields a causal, and noise- and
speaker-independent algorithm for monaural speech enhance-
ment. Our experimental results demonstrate that complex spec-
tral mapping with our proposed model significantly improves
STOI and PESQ over magnitude spectral mapping, as well as
complex ratio masking and complex ratio masking based signal
approximation. In addition, our proposed model substantially
outperforms an existing CNN for complex spectral mapping.
Moreover, we incorporate a grouping strategy into recurrent lay-
ers to substantially elevate model efficiency while maintaining
the performance.

Our proposed approach also provides a phase estimate, which
is demonstrated to be closer to the clean phase than the noisy
phase. From another perspective, we find that the estimated
phase yields noticeably higher STOI and PESQ than the noisy
phase when combined with the noisy magnitude or the enhanced
magnitude.

It should be noted that clean speech can be perfectly recov-
ered from the target complex spectrogram. We believe that the
GCRN-based approach with complex spectral mapping repre-
sents a significant step towards producing high-quality enhanced
speech in adverse acoustic environments and practical appli-
cations. In future studies, we plan to extend our approach to
multi-channel speech enhancement, in which accurate phase
estimation is likely more important.
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TABLE VIII
COMPARISONS OF NOISY PHASE, ESTIMATED PHASE, AND CLEAN PHASE COMBINED WITH NOISY MAGNITUDE IN STOI AND PESQ

TABLE IX
COMPARISONS OF NOISY PHASE, ESTIMATED PHASE, AND CLEAN PHASE COMBINED WITH ENHANCED MAGNITUDE IN STOI AND PESQ

TABLE X
COMPARISONS OF NOISY PHASE, ESTIMATED PHASE, AND CLEAN PHASE COMBINED WITH CLEAN MAGNITUDE IN STOI AND PESQ
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