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SAGRNN: Self-Attentive Gated RNN For Binaural
Speaker Separation With Interaural Cue Preservation

Ke Tan , Buye Xu , Anurag Kumar, Eliya Nachmani, and Yossi Adi

Abstract—Most existing deep learning based binaural speaker
separation systems focus on producing a monaural estimate for
each of the target speakers, and thus do not preserve the in-
teraural cues, which are crucial for human listeners to perform
sound localization and lateralization. In this study, we address
talker-independent binaural speaker separation with interaural
cues preserved in the estimated binaural signals. Specifically, we
extend a newly-developed gated recurrent neural network for
monaural separation by additionally incorporating self-attention
mechanisms and dense connectivity. We develop an end-to-end
multiple-input multiple-output system, which directly maps from
the binaural waveform of the mixture to those of the speech sig-
nals. The experimental results show that our proposed approach
achieves significantly better separation performance than a recent
binaural separation approach. In addition, our approach effec-
tively preserves the interaural cues, which improves the accuracy
of sound localization.

Index Terms—Binaural speaker separation, self-attention,
interaural cue preservation, time-domain.

I. INTRODUCTION

IN REAL acoustic environments, a speech source of interest is
frequently corrupted by interfering sounds. Human auditory

system excels at attending to a target speech source, and the
cocktail party problem [5] aims to develop such capabilities in
man-made devices and systems. A critical aspect of the cocktail
party problem is speaker separation which aims to separate
multiple concurrent speech signals of interest from a sound
mixture.

Conventionally, most of the speaker separation methods work
in time-frequency (T-F) domain where T-F representations are
typically computed using short-time Fourier transform (STFT).
In recent years, the performance of T-F domain speaker sepa-
ration has substantially improved due to the use of deep learn-
ing [4], [13], [15], [18], [20], [34]–[36], [38]. Moreover, the
advent of deep learning based speech separation has also ignited
interest in time-domain approaches, which directly estimate the
waveform of clean speech from that of the mixture without
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resorting to a T-F representation. A notable time-domain speaker
separation approach is TasNet [22], which yields comparable
scale-invariant signal-to-noise ratios (SI-SNRs) and signal-to-
distortion ratios (SDRs) to the ideal ratio mask (IRM). Other
related studies include [21], [26], [30], [33], [40] and [39].

While several time-domain monaural speaker separation
methods have been developed, very few works have focused
on binaural separation. Moreover, most existing binaural sep-
aration systems have a multiple-input single-output (MISO)
layout, which produce a mono estimate for each of the target
speakers from a binaural mixture [6], [19], [42]. Hence these
systems do not preserve interaural cues such as interaural time
differences (ITDs) and interaural level differences (ILDs), which
are crucial for human listeners to perform sound localization and
lateralization [7], [14].

On the T-F domain front, various techniques have been devel-
oped to preserve binaural cues in the estimated signals. One can
apply a common real-valued T-F mask or spectral gain to both
left and right channels [23], [43]. Alternatively, binaural cues can
be preserved by applying adaptive beamformers with additional
constraints that encourage interaural cue preservation [10], [24],
[31]. However, these techniques sacrifice the separation perfor-
mance. More recently, a multiple-input multiple-output (MIMO)
TasNet [11] was designed, which produces a binaural esti-
mate for each speaker. MIMO TasNet yields significantly better
speech quality than the single-channel TasNet while preserving
both ITDs and ILDs.

In this letter, we propose a novel framework called multiple-
input multiple-output self-attentive gated recurrent neural net-
work (MIMO SAGRNN) for binaural speaker separation. The
proposed SAGRNN network architecture extends the gated
RNN in [26] by additionally incorporating self-attention mech-
anisms and dense connectivity (DC). We then derive MIMO
SAGRNN from a single-input single-output (SISO) SAGRNN
by first extending the SISO SAGRNN into a multiple-input
single-output (MISO) layout by creating two encoders, one for
the reference ear input and the other for the non-reference ear
input. This MISO SAGRNN estimates the separated signals in
the reference ear. The MIMO system is formulated by alternately
treating each ear as the reference ear, yielding estimates for both
ears in a symmetric manner.

The rest of this letter is organized as follows. Section II
describes our proposed approach. The experimental results are
presented in Section III, and Section IV concludes this letter.

II. ALGORITHM DESCRIPTION

We progressively develop a MIMO system for binaural
speaker separation. Specifically, we start with a SISO SAGRNN
architecture, and then present the MIMO setup.
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Fig. 1. (Color Online). Diagram of SISO SAGRNN. The dotted lines represent the procedures that exist only during training.

Fig. 2. (Color Online). Diagram of the SA-MULCAT block. The dotted lines indicate that the procedures exist in all SA-MULCAT blocks except the first one.
The symbol

⊗
represents the element-wise multiplication, and

⊕
the element-wise addition.

A. SISO SAGRNN

As in [26], the separation framework of a SISO SAGRNN
comprises three stages: encoding and chunking, block process-
ing, and decoding and overlap-add. A time-domain input mix-
ture is transformed into a set of overlapped chunks via encoding
and chunking, which leads to a 3-D embedding. Subsequently,
the 3-D embedding is passed into stacked RNN blocks to
perform intra-chunk (local) and inter-chunk (global) modeling
alternately and iteratively. The 3-D representation learned by
the last RNN block is decoded and then transformed back to the
time domain by an overlap-add operator.

Given a T -sample input waveform y ∈ RT , an encoder is
used to segment and encode y into L overlapped time frames
with a frame size of P and a hop size of P/2, yielding a
2-D embedding U ∈ RN×L. Specifically, the encoder consists
of a 1-D strided convolutional layer with N output channels,
followed by a rectified linear activation function. We divide the
time frames into S overlapped chunks with a chunk size of R
and a hop size of R/2. These chunks are then concatenated
into a 3-D embeddingW̃ = [W1, . . . ,WS ] ∈ RN×S×R, where
W1, . . . ,WS ∈ RN×R are the 2-D chunks.

Subsequently, the 3-D embedding W̃ is fed into a series of
B RNN blocks for processing. To improve the information and
gradient flow between blocks, we propose a dense connectivity
pattern: each block receives the outputs of all preceding blocks,
i.e. W̃b = Hb([W̃0, . . . ,W̃b−1]) for b = 1, . . . , B,

where Hb denotes the mapping function defined by the b-
th block, and [·, . . . , ·] the concatenation operation. The output
embedding of the b-th block is represented byW̃b, whereW̃0 =

W̃ and W̃b ∈ RN×S×R, ∀b. The dense connections encourage
feature reuse among blocks, which explicitly leverage different
information learned by different blocks.

Similar to [26], we use a multi-scale loss for training, which
necessitates producing a waveform estimate for each speaker
after each block. We decode the output embedding of each
block with a decoder, which comprises a parametric rectified
linear function [12] followed by a 2-D 1×1 convolutional
layer with C ·N output channels. The decoded feature of size
CN × S ×R is divided into C 3-D representations of size
N × S ×R, corresponding to the C speech sources. These

Fig. 3. (Color Online). (a) Diagram of the self-attention block. (b) Overview
of the MIMO separation system with an underlying MISO system.

3-D representations are transformed back to waveforms by two
successive overlap-add operations at the chunk level and the
frame level, respectively. Note that the same decoder is applied
to the output of each block. Fig. 1 depicts the SISO SAGRNN.

A series of multiply-and-concatenate (MULCAT) blocks are
employed to model the intra-chunk and inter-chunk dependen-
cies. In this study, we extend the MULCAT block by introducing
self-attention [32], which amounts to a self-attention based
MULCAT (SA-MULCAT) block illustrated in Fig. 2. The con-
catenation of paths from the dense connections is fed into a linear
projection layer for dimension reduction, yielding an embedding
of size N × S ×R. The resulting embedding is successively
passed through two subblocks, one for intra-chunk modeling
and the other for inter-chunk modeling. In each subblock, we
employ a self-attention block followed by a gated RNN module,
which consists of two bidirectional long short-term memory
(BLSTM) layers coupled with each other. Each BLSTM con-
tains H units in each direction. The Hadamard product of their
outputs is concatenated with the input to the gated RNN module,
and then passed into a linear projection layer for dimension
reduction. In addition, a skip connection is used to bypass the
subblock. After the first subblock, the dimensions of the 3-D
representation are re-permuted, so that sequential modeling can
be performed across chunks in the second subblock. After the
second subblock, the dimensions are re-permuted back.

The self-attention block is illustrated in Fig. 3(a). We first
divide a 3-D representation into a set of 2-D slices Z ∈ RM×N ,
where M = R for intra-chunk modeling and M = S for inter-
chunk modeling. Each slice is linearly projected to a query
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matrixQ, a key matrixK and a value matrixV by three different
projection layers, where Q,K,V ∈ RM×D and D is set to 64.
We apply a scaled dot-product attention function:

Attention(Q,K,V) = SoftMax

(
QK�
√
D

)
V, (1)

where SoftMax(·) denotes the softmax function across
columns. The output of the attention function is computed as
a weighted sum of the values, where the weight assigned to
each value is derived by measuring the similarities between
the queries and the keys. Subsequently, all the attention output
slices are merged and then linearly projected back to the size
of the input 3-D representation. With a skip connection, this
representation is concatenated with the input to the self-attention
block, and then projected back to the original size. The use of
self-attention is motivated by its recent success on monaural
speech enhancement and dereverberation [17], [41], which has
demonstrated its capability of capturing long-term dependen-
cies in target speech and interference. By leveraging the rele-
vance among features at different time steps, self-attention pro-
duces a dynamic representation in adapting to different acoustic
conditions.

B. MIMO SAGRNN

As shown in Fig. 3(b), a reference encoder and a non-reference
encoder are employed to process the binaural mixture wave-
forms. The resulting 2-D embeddings are concatenated and then
linearly projected to the size of N × L. Subsequently, we suc-
cessively perform block processing, decoding and overlap-add,
akin to the SISO system. In this MISO system, the separation
outputs always correspond to the reference ear. We formulate the
MIMO system by alternately treating each ear as the reference.
Specifically, the separation outputs for the left ear are obtained
by treating the left ear as the reference ear and the right ear
as the non-reference. The separation outputs for the right ear
are obtained by swapping the inputs of the two ears. Note that
the same MISO system is used for separation in both channels.
Such a cross-ear referencing strategy selects the target channel
by exploiting discriminative information within the ordered pair
of channels.

C. Training Objective

We use the plain SNR rather than the widely-used SI-
SNR [22] as the training objective. The rationale is that SI-SNR
training cannot preserve the ILD in the binaural estimates, as the
power scale of the estimated signals is insusceptible to training
due to the scale invariance. The mean of the SNR losses from
all SA-MULCAT blocks is used for training. The waveforms
of the clean speech signals are used as the training target for
calculating the losses from all blocks. In addition, we apply the
permutation invariant training [18] criterion to the loss from each
block individually, which allows the label permutation to change
from one block to another.

III. EXPERIMENTS

A. Experimental Setup

We simulate a noise-free dataset and a noisy dataset from
the WSJ0-2mix dataset [9], [13], which contains 20,000, 5,000
and 3,000 mixtures in the training, validation and testing sets,

TABLE I
COMPARISON OF DIFFERENT SYSTEMS IN THE NOISE-FREE CONDITION

respectively. For both datasets, we convolve each pair of utter-
ances in WSJ0-2mix with two randomly sampled head-related
impulse responses (HRIRs) from the CIPIC HRTF Database [3]
respectively, which contains 45 subjects with 25 (azimuths)× 50
(elevations) directions for each subject. Specifically, we choose
35 subjects for training and cross validation, and use the 10
remaining subjects for testing. For the noisy dataset, we addition-
ally simulate uncorrelated noise sources by randomly selecting
HRIRs for them, where the number of noise sources is randomly
sampled between 1 and 10. Note that all sound sources are placed
in different directions. We use a set of roughly 65,000 noises
from the DNS Challenge [28] for training and cross validation,
and a different set [2] of roughly 1,300 noises for testing. The
SNR (w.r.t. the speech mixture in the left ear) is randomly chosen
between -10 dB and 10 dB. All signals are sampled at 8 kHz.

We train the models on 4-second segments with the AMSGrad
optimizer [27] with a minibatch size of 4. The learning rate
is initialized to 0.0002, which decays by 0.98 every 2 epochs.
Gradient clipping with a maximum �2 norm of 3 is applied during
training. The network hyperparameters for MIMO SAGRNN are
as follow: P = 8, N = 128, R = 126, H = 128, D = 64 and
B = 6. Note that the value of R is selected such that R ≈ S =
128 for the training segments.

We use several monaural and binaural separation models for
comparison; the monaural models are trained and evaluated on
each ear individually. Specifically, we use TasNet [22], dual-path
RNN (DPRNN) [21] and the gated RNN in [26] as monaural
baselines. We use MIMO TasNet [11] as a binaural baseline.
We slightly adjust the hyperparameter configurations of all base-
lines, so that they have comparable model sizes to our MIMO
SAGRNN. For the noncausal temporal convolutional network
(TCN) in TasNet [22], the number of repeated stacks is set to
4. For DPRNN, the number of output channels in the encoder
and the decoder is set to 128, and the number of units in each
direction for each BLSTM to 200. For MIMO TasNet, we replace
the causal TCN by a noncausal TCN, with bottleneck size of 128.
In addition, the number of output channels in the encoder and
the decoder of MIMO TasNet is set to 512.

B. Experimental Results

1) Separation Results and Analysis: Tables I and II show
comparison among different approaches for the noise-free
and noisy conditions respectively. The separation results are
reported in terms of SDR improvement (ΔSDR), SNR im-
provement (ΔSNR), extended short-time objective intelligibil-
ity (ESTOI) [16], and perceptual evaluation of speech quality
(PESQ) [29]. We can observe that MIMO TasNet produces
consistently better results than the monaural baselines. More-
over, our proposed MIMO SAGRNN substantially outperforms
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TABLE II
COMPARISON OF DIFFERENT SYSTEMS IN THE NOISY CONDITION

TABLE III
COMPARISON BETWEEN SISO AND MIMO SAGRNNS ON THE BETTER-EAR

CHANNEL FOR THE NOISY CONDITION

MIMO TasNet in all the four metrics. For the noise-free con-
dition, MIMO SAGRNN improves SDR by 6.05 dB and SNR
by 6.19 dB over MIMO TasNet. Some demos can be found at
https://jupiterethan.github.io/sagrnn.github.io/.

In addition, we compare MIMO SAGRNN with several oracle
approaches, including ideal binary mask (IBM), ideal ratio mask
(IRM), phase-sensitive mask (PSM) [8] and an oracle masking-
based minimum variance distortionless response (MB-MVDR)
beamformer. We use an open-source implementation [1] of the
oracle MB-MVDR beamformer, with a frame length of 64 ms
and a frame shift of 32 ms. The IRM is used to calculate the
spatial covariance matrices. We alternately treat each channel as
the reference channel to produce the binaural estimate. As shown
in Table I, our approach consistently outperforms the ideal masks
and the oracle beamformer in the noise-free condition. In the
noisy condition (Table II), our approach produces slightly higher
SDR and SNR but lower ESTOI and PESQ than the PSM. Note
that, ESTOI and PESQ improvements over the mixtures using
the oracle MB-MVDR beamformer dramatically decrease in the
noisy condition compared with the noise-free condition. This is
likely because the directionality of the sound sources is smeared
due to the presence of multiple noise sources. In contrast, our
approach is more robust against the noise field.

2) Ablation Study: We conduct an ablation study to under-
stand the contribution of each component in our approach.
Several variants of MIMO SAGRNN are compared in Table I:
(i) using multi-scale loss computed from only the last three
RNN blocks; (ii) using loss computed from only the last RNN
block; (iii) without dense connections; (iv) without self-attention
blocks; (v) without dense connections and self-attention blocks.
It is shown that self-attention and dense connectivity are crucial
for MIMO SAGRNN. Without self-attention, for example, SDR
decreases by 4.06 dB and SNR by 4.13 dB. We also compare the
SISO and MIMO SAGRNNs on the better-ear channel; better
ear is defined as the ear that is closer to the target speech source.
The azimuth position of the speech source is used to determine
the better ear. Table III shows that MIMO SAGRNN yields
significantly better results than SISO SAGRNN and the gated
RNN in [26] on all metrics, evidencing that the binaural inputs
are effectively leveraged by our MIMO system.

3) Evaluation of Interaural Cue Preservation: Lastly, we
evaluate the preservation of interaural cues in the estimated
binaural signals under noise-free condition. We apply a binaural
sound localization algorithm [25] to the binaural estimates, of
which an open-source implementation is available. This imple-
mentation estimates the azimuth position of the sound source

TABLE IV
EVALUATION OF INTERAURAL CUE PRESERVATION WITH BINAURAL SOUND

LOCALIZATION FOR THE NOISE-FREE CONDITION

Fig. 4. (Color Online). An example of ITD and ILD distributions.

at the frame level, as well as the ITD and the ILD for each T-F
unit of a 32-channel cochleagram based on a gammatone filter-
bank. The average frame-level azimuth errors are presented in
Table IV. Given the dominance of the ITD cue at low frequencies
(below 1.5 kHz) in sound localization [37], we only take into
account the frequency bands corresponding to gammatone filters
with a maximum center frequency of approximately 1.5 kHz.
Since ILD is highly frequency-dependent due to diffraction and
attenuation of the sounds, we calculate the average ILD errors
individually for three empirically selected frequency channels,
corresponding to the gammatone filters with the center frequen-
cies of roughly 2.07, 3.08 and 3.75 kHz. Given the fact that all
sound sources are stationary in this study, we summarize only
one ITD/ILD from an entire utterance in the following way.
We plot a histogram of the T-F unit level ITDs/ILDs, and then
estimate the ITD/ILD based on the center value of the highest
bin. The number of bins is empirically set to 500 for ITD and 40
for ILD. An example of ITD and ILD histograms are presented
in Fig. 4. As shown in Table IV, our approach reduces the
azimuth error by 20.15◦ compared to the mixtures. Moreover,
our approach yields consistently smaller azimuth, ITD and ILD
errors than MIMO TasNet and the monaural baselines, showing
that our approach preserves the interaural cues more effectively.

IV. CONCLUSION

We have proposed an end-to-end MIMO system for binaural
speaker separation with interaural cue preservation. We devel-
oped a novel framework which relies on self-attention and dense
connectivity for improved speaker separation. Our experimental
results show that the proposed approach significantly outper-
forms a binaural separation approach (i.e. MIMO TasNet) in
terms of ΔSDR, ΔSNR, ESTOI and PESQ. Moreover, our ap-
proach effectively preserves the auditory spatial cues of talkers.
For future work, we would devote more efforts to the design
of MIMO systems for real-time processing, as well as exploring
binaural speaker separation in more realistic acoustic conditions
(e.g. with reverberation and diffuse noise).
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