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Audio-Visual Speech Separation and Dereverberation
With a Two-Stage Multimodal Network
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Abstract—Background noise, interfering speech and room re-
verberation frequently distort target speech in real listening envi-
ronments. In this study, we address joint speech separation and
dereverberation, which aims to separate target speech from back-
ground noise, interfering speech and room reverberation. In order
to tackle this fundamentally difficult problem, we propose a novel
multimodal network that exploits both audio and visual signals.
The proposed network architecture adopts a two-stage strategy,
where a separation module is employed to attenuate background
noise and interfering speech in the first stage and a dereverberation
module to suppress room reverberation in the second stage. The two
modules are first trained separately, and then integrated for joint
training, which is based on a new multi-objective loss function. Our
experimental results show that the proposed multimodal network
yields consistently better objective intelligibility and perceptual
quality than several one-stage and two-stage baselines. We find that
our network achieves a 21.10% improvement in ESTOI and a 0.79
improvement in PESQ over the unprocessed mixtures. Moreover,
our network architecture does not require the knowledge of the
number of speakers.

Index Terms—Audio-visual, multimodal, speech separation and
dereverberation, far-field, two-stage, deep learning.

I. INTRODUCTION

IN AN acoustic environment like a cocktail party, the hu-
man auditory system is remarkably capable of following

a single target speech source in the presence of interfering
speakers, background noise and room reverberation. Speech
separation, also commonly known as the cocktail party prob-
lem, is the task of separating target speech from background
interference [6], [45]. Both interfering sounds from other sources
and reverberation from surface reflections corrupt target speech,
which can severely degrade speech intelligibility for human
listeners, as well as the performance of computing systems for
speech processing. Numerous research efforts have been made
to improve the performance of speech separation for decades.
Inspired by the concept of time-frequency (T-F) masking in
computational auditory scene analysis (CASA), speech separa-
tion has been recently formulated as supervised learning, where
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discriminative patterns within target speech or background inter-
ference are learned from training data [44]. Thanks to the use of
deep learning, the performance of supervised speech separation
has been substantially elevated in the last decade [49], [45].
Producing high-quality separated speech in adverse acoustic
environments, however, still remains a challenging problem.

Speaker separation has attracted considerable research atten-
tion in the last several years, of which the goal is to extract mul-
tiple speech sources, one for each speaker. Speaker-independent
speech separation, where none of the speakers are required to
be the same between training and testing, is susceptible to the
label ambiguity (or permutation) problem [51], [14]. Notable ap-
proaches to speaker-independent speech separation include deep
clustering [14] and permutation-invariant training (PIT) [57],
which address the label ambiguity from different angles. Deep
clustering treats speaker separation as spectral clustering, while
PIT uses a dynamically calculated loss function for training.
Many recent studies have extended these two approaches. For
example, a dilated convolutional neural network (CNN) named
TasNet is employed to perform time-domain speech separation
in [27], where utterance-level PIT [24] is applied during training.
An alternative way to resolve the label ambiguity is to use
speaker-discriminative acoustic cues of the target speaker as
an auxiliary input for separation. In a recent study [46], a
pre-recorded short utterance from the target speaker is used
as an anchor for attentional control, which selects the target
speaker to be separated. Analogously, a speaker-discriminative
embedding is produced by a speaker recognition network from
a reference signal of the target speaker in [48]. The embedding
vector, along with the spectrogram of the noisy mixture, is then
fed into the separation network. A potential advantage of such
approaches is that the knowledge of the number of speakers is not
required.

Visual cues such as facial movements or lip movements of
a speaker can supplement the information from the speaker’s
voice and thus facilitate speech perception, particularly in noisy
environments [28], [29], [38]. Motivated by this finding, various
algorithms have been developed to combine audio and visual sig-
nals to perform speech separation in a multimodal manner [36].
There is recent interest in using deep neural networks (DNNs)
to achieve this goal. Hou et al. [17] designed an audio-visual
speech enhancement framework based on multi-task learning.
Their experimental results show that the audio-visual enhance-
ment framework consistently outperforms the same architecture
without visual inputs. A similar model is developed in [9],
where a CNN is trained to directly estimate the magnitude
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spectrogram of clean speech from noisy speech and the input
video. Moreover, Gabbay et al. [8] employs a video-to-speech
method to synthesize speech, which is subsequently used to
construct T-F masks for speech separation. Other related studies
include [16], [54], [21].

Although the aforementioned deep learning based audio-
visual approaches considerably elevate the separation perfor-
mance over traditional audio-visual approaches, they do not
address speaker generalization, which is a crucial issue in su-
pervised speech separation. In other words, they have been only
evaluated in a speaker-dependent way, in which the speakers
are not allowed to change from training to testing. Recent
studies [7], [1], [33], [30], [53] have developed algorithms
for speaker-independent speech separation. Ephrat et al. [7]
designed a multi-stream neural network based on dilated con-
volutions and bidirectional long short-term memory (BLSTM),
which leads to significantly better performance than several
earlier speaker-dependent models. Afouras et al. [1] utilize two
subnetworks to predict the magnitude spectrogram and the phase
spectrogram of clean speech, respectively. In [33], a DNN is
trained to predict whether audio and visual streams are tempo-
rally synchronized, which is then used to produce multisensory
features for speech separation. Wu et al. [53] developed a
time-domain audio-visual model for target speaker separation.
Note that these studies address monaural speech separation in
close-talk scenarios.

In a real-world acoustic environment, speech signals
are usually distorted by reverberation from surface re-
flections. Dereverberation has been actively studied for
decades [3], [32], [31], [11]. Although deep learning based
approaches have significantly improved dereverberation per-
formance in recent years [10], [52], [55], [58], reverberation
remains a well-recognized challenge, especially when it is
combined with background noise, interfering speech, or both.
Despite the promising progress on audio-visual speech sepa-
ration, few of recent studies deal with both speech separation
and dereverberation in a multimodal way. Given the importance
of separation and dereverberation to both human and machine
listeners (e.g. automatic speech recognition) in noisy and re-
verberant environments, we address speaker-independent multi-
channel speech separation and dereverberation in this study,
which aims to separate target speech from interfering speech,
background noise and room reverberation. Inspired by recent
works [22], [42], [58] on speech separation, we believe that
it is likely more effective to address separation and derever-
beration in separate stages due to their intrinsical differences.
Hence, we first separate target reverberant speech from inter-
fering speech and background noise using a dilated CNN, and
then employ a BLSTM to dereverberate the separated speech
signal. Subsequently, the two-stage model is jointly trained to
optimize a new multi-objective loss function, which combines
a mean squared error (MSE) loss in the T-F domain and a scale-
invariant signal-to-noise ratio (SI-SNR) loss in the time domain.
Our experimental results show that the proposed multimodal
network improves extended short-time objective intelligibility
(ESTOI) [20] by 21.10% and perceptual evaluation of speech
quality (PESQ) [37] by 0.79 over the unprocessed mixtures.

Moreover, we find that the proposed network considerably
outperforms several one-stage and two-stage baselines. In this
study, audio-visual based joint speech separation and derever-
beration are thoroughly investigated in far-field scenarios, where
interfering speech, background noise and room reverberation are
present.

The rest of this paper is organized as follows. In Section II,
we introduce the multi-channel far-field signal model. Section III
provides a brief description of several auditory and visual fea-
tures used in this study. In Section IV, we describe our proposed
audio-visual multimodal network architecture in detail. The
experimental setup is provided in Section V. In Section VI, we
present and discuss experimental results. Section VII concludes
this paper.

II. MULTI-CHANNEL FAR-FIELD SIGNAL MODEL

Let k and m be the time sample index and the channel index,
respectively. Thus the far-field speech mixture y(m) can be
modeled as

y(m)[k] = s[k] ∗ h(m)
s [k] +

∑

i

si[k] ∗ h(m)
i [k]

+ n[k] ∗ h(m)
n [k], (1)

where s, si and n denote the target speech source, the i-th
interfering speech source and the background noise source,
respectively, and hs, hi and hn the room impulse responses
(RIRs) corresponding to the target speech source, the i-th
interfering speech source and the background noise source,
respectively. The convolution operation is represented by ∗.
The objective of this study is to estimate the anechoic target
speech signal from the M -channel far-field speech mixture
y = [y(1), y(2), . . . , y(M)], as well as the visual streams of the
target and interfering speakers’ lip images. In this study, we use
a linear array of nine microphones as depicted in Fig. 1(a). We
number the nine microphones from left to right as 0, 1, . . . , 8,
respectively. Without loss of generality, we treat the clean speech
signal picked up by microphone 0 as the target signal.

III. AUDITORY AND VISUAL FEATURES

In this study, we assume that all signals are sampled at 16 kHz.
A 32-ms square-root Hann window is employed to segment a
speech signal into a set of time frames, with a 50% overlap
between adjacent frames. We resample the visual streams of
face images from all videos to 25 frames-per-second (FPS),
where face detection is performed using the tools in the dlib
library.1 From these preprocessed data, we extract three auditory
features and a visual feature for multimodal speech separation
and dereverberation.

A. Log-Power Spectrum

The log-power spectrum (LPS) of the noisy mixture received
by microphone 0, which is a standard spectral representation, is
computed on a 512-point short-time Fourier transform (STFT),

1[Online]. Available: http://dlib.net
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Fig. 1. (a) Configuration of the linear microphone array, in which nine micro-
phones are nonuniformly spaced and symmetrically distributed. A 180-degree
wide-angle camera is co-located with the microphone array center, and the
camera is well aligned with the linear array. (b) An example of DOA calculation
according to the physical location of the target face in the whole captured video
view.

leading to 257-dimensional (257-D) LPS features. An example
of LPS features is shown in Fig. 2(a).

B. Interchannel Phase Difference

The interchannel phase difference (IPD) is an informative
spatial cue which can reflect subtle changes in the direction-
of-arrival (DOA) of a sound source. Given a pair of channels
m1 and m2, the IPD is defined as

φt,f = ∠Y (m2)
t,f − ∠Y (m1)

t,f , (2)

where Y
(m1)
t,f and Y

(m2)
t,f are the STFT values of the noisy

mixture in the T-F unit at time frame t and frequency bin f .
In this study, we exploit the cosine value of the interchannel
phase difference (cosIPD), i.e.

cosφt,f = cos
(
∠Y (m2)

t,f − ∠Y (m1)
t,f

)
. (3)

Specifically, we concatenate the cosIPDs between five pairs of
channels, i.e. (0, 8), (0, 4), (1, 4), (4, 6) and (4, 5), correspond-
ing to five different microphone distances (see Fig. 1(a) for
the microphone numbering). The IPD and cosIPD features are
illustrated in Fig. 2(b) and (c), respectively.

Fig. 2. (Color Online). Illustration of LPS, IPD and cosIPD features.

C. Angle Features

We derive an angle feature (AF) for the target speaker, which
was first developed in [5]:

At,f =

M−1∑

m=0

〈e(m)
f ,

Y
(m)
t,f

Y
(0)
t,f

〉

‖e(m)
f ‖ · ‖Y

(m)
t,f

Y
(0)
t,f

‖
, (4)

where M represents the number of microphones and e
(m)
f

the steering vector coefficient for the target speaker’s DOA at
channel m and frequency bin f . The inner product is denoted
by 〈·, ·〉, and the vector norm by ‖ · ‖. Note that both e

(m)
f

and Y
(m)
t,f /Y

(0)
t,f are complex-valued, and they are treated as

2-D vectors in the operations 〈·, ·〉 and ‖ · ‖, where their real
and imaginary parts are regarded as two vector components.
The steering vector is calculated based on the geometry of the
microphone array and the arrival direction of the target speech
signal, which can be obtained by tracking the target speaker’s
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Fig. 3. (Color Online). Our proposed multimodal network architecture for joint separation and dereverberation, where K denotes the kernel size and r the dilation
rate. The element-wise multiplication is represented by

⊗
. The processes indicated by red lines occur only during training; those indicated by blue lines occur

only during inference; those indicated by black lines occur during both.

face from a video captured by a 180-degree wide-angle camera
that is co-located with the microphone array center, as shown in
Fig. 1(a). The 180-degree wide-angle camera is aligned with the
linear microphone array, so that the DOA can be easily calculated
as in Fig. 1(b). In our experiments, we simulate visual data rather
than collect visual data using a real camera.

D. Lip Features

Each frame of the facial visual stream is cropped to the size of
112× 112 based on the mouth region, which amounts to a visual
stream of lip images. These images are converted to grayscale
using the tools in OpenCV.2 The visual streams from all detected
speakers, including both the target speaker and the interfering
speakers, are passed into the multimodal network. Note that the
faces of the multiple speakers are simultaneously detected by
the camera, any of which can be treated as the target speaker,
defined by the user. Thus the corresponding target face is used
to determine the arrival direction of target speech for the angle
feature computation. From an alternative perspective, the lip
features and the angle features select the speaker to be separated
and allow the network to attend the speech signal coming from
the direction of the target speaker.

IV. A TWO-STAGE MULTIMODAL NETWORK FOR JOINT

SEPARATION AND DEREVERBERATION

In this section, we elaborately describe our proposed two-
stage multimodal network architecture for joint separation and
dereverberation, which comprises two modules, i.e. a separation

2[Online]. Available: https://opencv.org/

module and a dereverberation module. The proposed architec-
ture is illustrated in Fig. 3.

A. Separation Stage

In the separation stage, the LPS features calculated from
channel 0 are first passed through a layer normalization [4]
layer. The normalized LPS features, the cosIPD features and the
angle features are then concatenated into a sequence of 1799-D
feature vectors. Subsequently, the sequence is fed into a 1-D
convolutional layer with 256 kernels of size 1 (i.e. a pointwise
convolutional layer) for dimension reduction. A stack of eight
successive 1-D convolutional blocks with dilation rates 1, 2, . . . ,
27 is then employed to produce a sequence of audio embeddings.
The dilated convolutional block is depicted in Fig. 4(a).

The visual stream of a speaker is fed into a spatio-temporal
residual network developed in [1], which comprises a 3-D
convolutional layer followed by a 18-layer ResNet [13]. The
spatio-temporal residual networks corresponding to different
speakers share weights with one another. As shown in Fig. 3, the
output for the target speaker, as well as the element-wise average
of the outputs for all interfering speakers, is passed into a 1-D
convolutional block (see Fig. 4(b)) to yield two sequences of vi-
sual embeddings. Akin to the spatio-temporal residual networks,
the 1-D convolutional block for the target speaker and that for the
interfering speakers share weights. The two sequences produced
by the 1-D convolutional blocks are concatenated into a sequence
of 1024-D embedding vectors, which is subsequently upsampled
temporally to 62.5 FPS (=16000/(50%× 0.032× 16000)) to fit
the frame rate of the audio embeddings. The averaging operation
across the outputs of the spatio-temporal residual networks for
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Fig. 4. (Color Online). Diagram of the dilated convolutional block in the
audio part (a) and the 1-D convolutional block in the visual part (b), where⊕

represents the element-wise summation and C the number of kernels. In (a),
the middle layer performs a dilated depthwise convolution. In (b), the first layer
performs a depthwise convolution. The first two layers in (a), as well as the first
layer in (b), are coupled with batch normalization [18] and parametric rectified
linear units (PReLUs) [12].

different interfering speakers allows the multimodal network to
accept visual streams from an arbitrary number of interfering
speakers. In other words, our multimodal network is indepen-
dent of the number of interfering speakers, unlike the network
developed in [7], which can only be used for a fixed number of
speakers. Note that when no interfering speaker is detected, we
use an all-zero “visual stream” as the input of the spatio-temporal
residual network for the interfering speaker branch. It should be
pointed out that an alternative way is to only use the visual
stream of the target speaker as in [53], while additionally using
those of interfering speakers potentially leads to more robust
performance, particularly when the lip images of the target
speaker is blurred or the camera only captures the side face of
the target speaker.

We refer to the two network branches that produce the audio
and visual embeddings as the audio submodule and the visual
submodule, respectively. The audio and visual embeddings are
concatenated and then fed into a 1-D pointwise convolutional
layer with 256 kernels for audio-visual feature fusion and dimen-
sion reduction. Subsequently, the learned high-level features are
passed into three repeats of the dilated convolutional blocks (see
Fig. 4(a)) to model temporal dependencies. The dilation rates
of eight stacking convolutional blocks within each repeat are
assigned with exponentially increasing values, i.e. 1, 2, . . . , 27,
which exponentially expand the receptive fields in the time direc-
tion, allowing for temporal context aggregation that facilitates
estimation. Such a design is originally inspired by the WaveNet
for speech synthesis [43] and has been successfully applied to
speech separation in recent studies [35], [40], [41], [27]. A 1-D
pointwise convolutional layer with rectified linear units (ReLUs)
is employed to estimate a ratio mask, which is then element-wise
multiplied by the magnitude spectrogram of the noisy mixture
from channel 0 to produce that of separated reverberant speech.

During training, the estimated magnitude is combined with
noisy phase (from channel 0) to resynthesize a time-domain
signal via an inverse short-time Fourier transform (iSTFT). The
separation network is trained to maximize the SI-SNR, which
has been commonly used as an evaluation metric for speaker

separation in recent studies [19], [25], [27], [50]. Thus an SI-
SNR loss function can be defined as

LSI-SNR = −SI-SNR

= −20 log10
‖α · s‖

‖ŝ− α · s‖ , (5)

where s ∈ R1×T and ŝ ∈ R1×T denote the ground-truth target
signal (i.e. reverberant target speech in this stage) and the esti-
mated signal with T time samples, respectively, and α a scaling
factor defined as

α =
〈ŝ, s〉
‖s‖2 . (6)

Note that ŝ and s are normalized to zero-mean prior to the
calculation to ensure scale invariance.

B. Dereverberation Stage

After the attenuation of interfering speech and background
noise, the original problem reduces to single-channel speech
dereverberation, i.e. recovering anechoic target speech from
reverberant target speech estimated by the separation module.
In this stage, we employ a BLSTM network with four hidden
layers to perform spectral mapping, which takes the spectral
magnitudes estimated by the separation module as the input.
The reason for using spectral mapping rather than ratio masking
in this stage is two-fold. First, ratio masking is well justified
for separation under the assumption that target speech and
background interference are uncorrelated, which holds well
for additive noise (including background noise and interfering
speech) but not for convolutive interference as in the case
of reverberation [45]. Second, speech separation algorithms
commonly introduce processing artifacts into the target speech
signal [15], [47]. It is likely difficult for ratio masking to suppress
such processing artifacts introduced by the separation module,
particularly considering that these artifacts are correlated with
the target speech signal.

During training, the well-trained parameters in the separation
module are frozen, and those in the dereverberation module
are trained to optimize an MSE loss function, which compares
the ground-truth magnitude spectrogram |S| with the estimated
magnitude spectrogram |Ŝ|:

LMSE = E
[
(|Ŝt,f | − |St,f |)2

]
, (7)

where E represents an averaging operation over all T-F units of
all training samples within a minibatch. The complex modulus is
denoted by | · |, i.e. the absolute value of a complex number. The
use of the MSE loss, rather than the SI-SNR loss, is motivated
by the observation that training with the SI-SNR loss leads to far
slower convergence and worse performance on speech derever-
beration than on speaker separation, which is likely because the
SI-SNR loss is based on a sample-wise error in the time domain
and thus sensitive to the highly correlated structure between the
direct sound and the reverberations [26].
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Fig. 5. (Color Online). Diagram of our dataset creation pipeline. In Steps 4 and 5, data filtering is performed based on the number of detected faces and the
estimated SNR, respectively.

C. Joint Training With a Multi-Objective Loss Function

After the two modules are well trained separately, we treat
them as an integrated network for joint training (JT). Akin to the
dereverberation stage, a straightforward way to train the network
is to optimize an MSE loss that is calculated on the output of the
dereverberation module, as shown in Eq. (7). Unlike the SI-SNR
loss, however, the MSE loss only reflects the difference between
the target magnitude and the estimated magnitude, where the
phase remains unaddressed. A recent study [34] suggests that
considerable improvements in both objective and subjective
speech quality can be achieved by accurate phase spectrum esti-
mation, which implies the importance of dealing with the phase
to producing high-quality separated speech. Since the SI-SNR
loss is calculated in the time domain, both the magnitude error
and the phase error are incorporated. In other words, training
with the SI-SNR loss implicitly involves phase estimation.

Motivated by this fact, we design a multi-objective loss func-
tion for joint training, which combines the MSE loss and the
SI-SNR loss:

LMulti-Obj = LMSE + λ · LSI-SNR, (8)

where λ is a pre-defined weighting factor. However, such a
combination of the two losses is dubious, as the MSE loss is
guaranteed to be non-negative while the SI-SNR loss in Eq. (5)
is unbounded. Specifically, there are two critical flaws in this
design. First, it is tricky to choose an appropriate value of λ,
which weights a loss LSI-SNR with an uncertain sign. Second,
when LMSE is close to −λ · LSI-SNR, the multimodal network is
discouraged to learn due to the gradients that are close to zero.

In order to mitigate these problems, an intuitive way is to
define an alternative SI-SNR loss that is ensured to be non-
negative like the MSE loss. Note that Eq. (5) can be rewritten
into

LSI-SNR = 20 log10
‖ŝ− α · s‖
‖α · s‖ . (9)

Thus we define a new SI-SNR loss as

L′
SI-SNR = 20 log10

(‖ŝ− α · s‖
‖α · s‖ + 1

)
. (10)

Therefore, we train the multimodal network with the multi-
objective loss function:

L′
Multi-Obj = LMSE + λ · L′

SI-SNR, (11)

where LMSE ∈ [0,+∞) and L′
SI-SNR ∈ [0,+∞). During infer-

ence, the estimated spectral magnitude is combined with the
noisy phase to recover the time-domain waveform.

V. EXPERIMENTAL SETUP

We create a new Chinese Mandarin audio-visual dataset for
this study. Specifically, we collect roughly 10,000 videos of
Chinese Mandarin lectures from YouTube, and then pass them
through a dataset creation pipeline, which is shown in Fig. 5. A
series of processing steps in the pipeline leads to an audio-visual
dataset including approximately 170,000 short video clips with a
total duration of around 155 hours. Each video clip in the dataset,
which has a duration between 500 ms and 13 s, corresponds to
an audio signal (i.e. the soundtrack of the video clip) and a visual
stream of grayscale lip (mouth) images.

Based on this new audio-visual dataset, we simulate multi-
channel data for multimodal speech separation and dereverber-
ation. The audio signals from different speakers in the Chinese
Mandarin dataset are treated as speech sources (either a target
source or an interfering source). Moreover, a random cut from
255 noises recorded indoors is treated as a noise source. These
sound sources and a microphone array (see Fig. 1(a)) are ran-
domly placed in a simulated room, where the distance between
a sound source and the microphone array center is limited to the
range of 0.5 m to 6 m. To include a wide variety of reverberant
environments, we generate a large set of 6,000 room impulse
responses (RIRs) using the image method [2] in 2,000 different
simulated rooms. The room size is randomly sampled in the
range of 4 m × 4 m × 3 m to 10 m × 10 m × 6 m, and the
reverberation time (T60) in the range of 0.05 s to 0.7 s. The
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Fig. 6. (Color Online). Distribution of two-speaker and three-speaker mixtures
and that of the angle between the DOA’s of the target speech signal and an
interfering speech signal in the training set (a) (c) and the test set (b) (d).

SNR is randomly chosen from 6, 12, 18, 24 and 30 dB, and the
target-to-interferer ratio (TIR) from −6, 0 and 6 dB. Here both
the SNR and the TIR are defined on reverberant signals:

SNR = 10 log10

∑
k s

2
tar[k]∑

k n
2[k]

dB, (12)

TIR = 10 log10

∑
k s

2
tar[k]∑

k s
2
int[k]

dB, (13)

where star, sint and n denote reverberant target speech, reverber-
ant interfering speech and reverberant noise, respectively. Based
on the signal model described in Section II, we create roughly
45,000, 200 and 500 mixtures in the training set, the validation
set and the test set, respectively. Note that all test speakers and
noises are excluded from the training set and the validation
set. In other words, we evaluate the models in a speaker- and
noise-independent way.

Both the training set and the test set include two-speaker
mixtures and three-speaker mixtures, of which the distributions
are shown in Fig. 6(a) and (b), respectively. Moreover, the
distributions of the angle between the DOA’s of the target
speech signal and an interfering speech signal are shown in
Fig. 6(c) and (d). In the case of three speakers (i.e. two in-
terfering speakers), we choose the smaller angle from the two
alternatives for counting in Fig. 6(c) and (d), i.e. AngleDOA =
min {∠(DOAtar,DOAint1),∠(DOAtar,DOAint2)}.

All models are trained on 4-second audio-visual chunks using
the Adam optimizer [23] with a learning rate of 0.0002. The
minibatch size is set to 20 at the chunk level. The best models
are selected by cross validation. In the two-stage approaches,
the spectral magnitudes produced by the separation module are
normalized via a layer normalization operation prior to being

fed into the BLSTM layers. On top of the four stacking BLSTM
layers, a fully connected layer with ReLU nonlinearity is used
to estimate the spectral magnitudes of anechoic target speech.
Specifically, from the input layer to the output layer, the BLSTM
has 257, 512, 512, 512, 512, and 257 units, respectively. For joint
training, we empirically choose 0.01, 0.02, 0.05, 0.08, 0.1, 0.2
and 0.4 as the value of λ for weighing the importance of the
MSE loss and the SI-SNR loss.

In this study, we mainly use two metrics to evaluate the
models, i.e. ESTOI and PESQ. ESTOI is an improved version
of short-time objective intelligibility (STOI) [39], which is an
objective speech intelligibility estimator that is commonly used
to evaluate the performance of speech enhancement. Specifi-
cally, STOI does not highly correlate with subjective listening
test results if the target speech signal is distorted by an additive
noise source with strong temporal modulations, e.g. a com-
peting speaker [20]. In contrast, ESTOI performs well in such
situations, as well as the situations where STOI performs well.
Moreover, PESQ is a speech quality estimator that is designed to
predict the mean opinion score of a speech quality listening test
for certain degradations. The STOI score is typically between
0 and 1, and the PESQ score between −0.5 and 4.5. For both
metrics, higher scores indicate better performance.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. Results and Comparisons

Table I presents comprehensive comparisons of different
approaches in ESTOI and PESQ. The numbers represent the
averages over the test samples in each test condition. We first
compare four one-stage baselines with IDs 1–4 (see Table I
for the IDs), where separation and dereverberation are jointly
performed in a single stage. These approaches treat the anechoic
target speech signal as the desired signal during training. In
approaches 3 and 4, a dilated CNN with an architecture of
the separation module in Fig. 3 is employed to separate target
speech from interfering speech, background noise and room
reverberation. Specifically, approach 3 trains the dilated CNN
with LSI-SNR, and approach 4 with LMSE. As shown in Table I,
approach 4 consistently outperforms approach 3 in both ESTOI
and PESQ, which suggests that LMSE is more advantageous than
LSI-SNR in the presence of room reverberation. In approach 2,
we remove the visual submodule from the baseline in approach
4, which leads to an audio-only baseline. One can observe
that approach 4 yields consistently higher ESTOI and PESQ
than approach 2, which demonstrates the usefulness of visual
inputs and thus the effectiveness of multimodal separation and
dereverberation. Approach 1 (simply denoted as “BLSTM”)
uses a BLSTM model, which takes the raw LPS, cosIPD and
AF features, as well as the visual embeddings produced by the
visual submodule, as inputs. It has four BLSTM hidden layers
with 512 units in each layer, and a fully connected layer with
ReLUs is used to estimate a ratio mask. From Table I, we can
see that approach 4 produces higher ESTOI and PESQ than
approach 1.

We now compare two-stage approaches with IDs 5–7 and
9–16, in which separation is performed in the first stage and
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TABLE I
COMPARISONS OF DIFFERENT APPROACHES IN ESTOI AND PESQ

dereverberation in the second stage. In approaches 5 and 6, the
separation module and the dereverberation module in Fig. 3 are
well trained separately, while the whole network is not jointly
trained. Specifically, approach 5 trains the BLSTM with an
SI-SNR loss LSI-SNR in the dereverberation stage, and approach
6 with an MSE loss LMSE. As shown in Table I, these two ap-
proaches produce similar ESTOI, while approach 5 yields a 0.12
PESQ improvement over approach 6. It should be pointed out
that, ESTOI is designed to measure the objective intelligibility
of speech, and is inappropriate for evaluation of dereverberation.
Moreover, both approaches 5 and 6 significantly outperform
the one-stage baselines (i.e. 1-4). For example, approach 6
improves ESTOI by 2.33% and PESQ by 0.19 over approach
4. In addition, approach 6 yields significantly higher ESTOI and
PESQ than approach 7, where the BLSTM in the dereverberation
module is replaced by a single-channel weighted prediction
error (WPE) minimization [56] method. The WPE method is
a representative method for speech dereverberation. Going from
approach 6 (without joint training) to approach 9 (with joint
training) substantially improves both metrics. Note that an MSE
loss LMSE (i.e. L′

Multi-Obj with λ=0) is used for joint training
in approach 9. To further demonstrate the effectiveness of our
proposed two-stage approach, we additionally train a network
with the same architecture as in Fig. 3, whereas the whole
network is trained from scratch, unlike approach 9 that trains the
dilated CNN and the BLSTM in two separate stages prior to joint
optimization. This network amounts to a one-stage approach,
i.e. approach 8. We can observe that approach 9 dramatically
improves ESTOI by 9.16% and PESQ by 0.36 over approach
8. Further improvements can be achieved by jointly training
the dilated CNN and the BLSTM with the multi-objective
loss function L′

Multi-Obj described in Section IV-C. We find that
λ=0.08 leads to the best performance in terms of ESTOI and
PESQ, which achieves a 21.10% ESTOI improvement and a
0.79 PESQ improvement over the unprocessed mixtures. For
all approaches in Table I, smaller DOA angles correspond to
smaller improvements over the unprocessed mixtures in terms
of both ESTOI and PESQ, as the angle features become less
discriminative and effective when the DOA angle between the
target and interfering speech signals decreases.

Fig. 7. (Color Online). SI-SNRi in dB over the unprocessed mixtures. See
Table I for the IDs of different approaches.

Moreover, SI-SNR improvements (SI-SNRi) over the un-
processed mixtures are shown in Fig. 7, where the SI-SNRi
is calculated as SI-SNRi = SI-SNRprocessed − SI-SNRunprocessed.
It can be observed that approaches 3 and 5, which train the
network to directly maximize SI-SNR, yield better SI-SNRi
than approaches 4 and 6. Our proposed approaches (i.e. 10-16)
produce better SI-SNRi than approach 7 (Dilated CNN+WPE)
and approach 8 (one-stage). When λ=0.08, our proposed two-
stage approach improves SI-SNR by 5.91 dB over the unpro-
cessed mixtures. Further increasing λ leads to slightly higher
SI-SNR, as a larger value of λ leads to more emphasis on the
SI-SNR loss during training. Fig. 8 shows an example of the
spectrograms of an unprocessed mixture, anechoic target speech
and estimated speech by our proposed two-stage multimodal
network (λ=0.08). More demos can be found at.3 We addition-
ally evaluate our proposed approach, as well as two baselines,
using the web version of Google’s Chinese Mandarin speech
recognition engine.4 The relative improvements of word error
rates (WERs) over the unprocessed mixtures are presented in
Table II, where the relative WER improvement is calculated as
(WERunprocessed − WERprocessed)/WERunprocessed. Note that the

3[Online]. Available: https://jupiterethan.github.io/av-enh.github.io/
4[Online]. Available: https://www.google.com/intl/en/chrome/demos/

speech.html

Authorized licensed use limited to: The Ohio State University. Downloaded on June 25,2020 at 20:49:52 UTC from IEEE Xplore.  Restrictions apply. 

[Online]. ignorespaces Available: ignorespaces https://www.google.com/intl/en/chrome/demos/speech.html


550 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 14, NO. 3, MARCH 2020

Fig. 8. (Color Online). An example of the spectrograms of an unprocessed
three-speaker mixture, anechoic target speech (ground-truth) and estimated
speech by our proposed two-stage multimodal network (λ = 0.08). The spectral
magnitudes are plotted on a log scale.

TABLE II
RELATIVE WER IMPROVEMENTS OVER THE UNPROCESSED MIXTURES

unprocessed mixtures produce a WER of 92.90%. The first
baseline in Table II is a dilated CNN with the same architecture
as the separation module in Fig. 3, which is trained to separate
the reverberant target speech from interfering speech and back-
ground noise. In other words, dereverberation is not performed
in this baseline, which yields a 37.13% relative WER improve-
ment over the unprocessed mixtures. A slightly larger relative
improvement is achieved by additionally using a WPE method
for dereverberation. As shown in Table II, our proposed approach
produces a 46.17% relative WER improvement compared with
the unprocessed mixtures, which is significantly better than the
two baselines. In addition, anechoic target speech (i.e. ground-
truth) produces a 87.95% relative WER improvement over the
unprocessed mixtures, which provides an upper bound for the
separation and dereverberation systems.

We further evaluate approaches 6, 7, 8 and 13 on a set of one-
speaker mixtures, which are created by mixing target speech and
background noise in reverberant environments. Table III shows
the ESTOI and PESQ results on mixtures with different numbers
of speakers, where all models are trained on two-speaker and
three-speaker mixtures. It can be observed that, approaches 6
and 7 only yield slight improvements on ESTOI and PESQ
over the unprocessed mixtures, and further improvements can
be obtained by approach 8. Note that approaches 6-8 exhibit
a performance trend on one-speaker mixtures opposite to that
on two-speaker and three-speaker mixtures. Our proposed ap-
proach (i.e. approach 13) produces consistently higher ESTOI
and PESQ than the three baselines, which reveals its relatively
stronger generalization capability in the single-speaker scenario.
In addition, we can see that the problem becomes more difficult
with more interfering speakers.

In addition, the ESTOI and PESQ results produced by the pro-
posed approach (with ID 13) for different direct-to-reverberant
ratio (DRR) [32] ranges are presented in Fig. 9(a) and (b). The
improvements over unprocessed mixtures are shown in Fig. 9(c)
and (d). The DRR is calculated from the RIR corresponding to
the target speaker as follows:

DRR = 10 log10

∑kd

k=0 h
2
s(k)∑∞

k=kd+1 h
2
s(k)

dB, (14)

where hs represents the RIR corresponding to the target speaker
at the first microphone, and kd is a time index that separates
the RIR into two parts, one for the direct-path propagation and
another for reverberation due to reflected paths. Note that the un-
processed samples with higher DRRs do not always correspond
to higher PESQ values due to a variety of other factors such as
the randomly selected SNRs and TIRs. It can be observed thatΔ
ESTOI does not exhibit a clear trend for different DRR ranges,
as DRR is mostly related to speech quality rather than objective
intelligibility. Higher DRRs correspond to larger Δ PESQ, as
shown in Fig. 9(d).

B. Investigation of Separation Performance

We now investigate the performance of the separation module.
The independently trained separation module (prior to joint
training) is used for investigation. We use the same dilated CNN
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TABLE III
ESTOI AND PESQ COMPARISONS OF DIFFERENT APPROACHES ON ONE-SPEAKER, TWO-SPEAKER AND THREE-SPEAKER MIXTURES

Fig. 9. (Color Online). ESTOI and PESQ results for different DRRs.ΔESTOI
and Δ PESQ indicate the ESTOI and PESQ improvements over unprocessed
mixtures, respectively.

TABLE IV
INVESTIGATION OF SEPARATION PERFORMANCE

with PIT as a baseline model. Note that we do not use the angle
features and lip features in the PIT baseline, as these features are
speaker-specific or direction-specific and thus inappropriate for
the PIT setup. The PIT baseline has two outputs, one for target re-
verberant speech and another for the residual signal. The residual
signal is derived by subtracting target reverberant speech from
the first-channel mixture, which contains interfering reverberant
speech and background noise. We train the PIT baseline using
the SI-SNR loss in Eq. (5). As shown in Table IV, the proposed
separation module significantly outperforms the PIT baseline,
which indicates that the visual information as well as the angle
features improves the separation performance.

C. Impact of Visual Features on Separation
and Dereverberation

The impact of visual information on separation and derever-
beration is further investigated in this section. We first compare
the proposed method with a new baseline model, which does not
use any visual inputs throughout the network. The baseline can
be easily derived by removing the visual submodule from the

multimodal network shown in Fig. 3. Table V lists the ESTOI,
PESQ and SI-SNRi results. We can observe that the removal of
visual information significantly degrades the performance in the
three metrics, which suggests the effectiveness of visual inputs.
To investigate the impact of visual features on dereverberation,
we additionally train a baseline model for comparison, which
uses visual embeddings in both the separation module and the
dereverberation module. The visual embeddings used in both
modules are learned by the same visual submodule. Specifically,
we concatenate the output spectra of the separation module with
the visual embeddings, which are then fed into the BLSTM for
dereverberation. Note that the separated spectra and the visual
embeddings are passed through a layer normalization layer prior
to concatenation. As shown in Table V, the inclusion of visual
features for dereverberation yields very slight improvements in
ESTOI and SI-SNRi, and no improvement in PESQ, over the
proposed method. An interpretation is that the dereverberation
module implicitly benefits from the visual features in the sepa-
ration module due to joint training. Hence, it is unnecessary to
explicitly use visual features in the dereverberation module.

D. Robustness Against Missing Visual Frames

In real applications, the lip images of speakers are not always
captured, particularly when they do not face towards the camera
temporarily. These lip images are recognized as missing visual
inputs. In this case, we compensate for the missing lip images
in the following way. For a missing frame of target or inter-
fering speakers’ lips, it is filled with the latest existing frame.
To investigate the robustness of our proposed method against
missing lip information, we randomly discard frames for each
speaker and apply the compensation method during inference.
We investigate three scenarios: (1) lip information of only the
interfering speaker(s) is partially lost; (2) lip information of
only the target speaker is partially lost; (3) lip information of
all speakers is partially lost.

Table VI shows that the proposed method is robust against
missing lip information for a frame loss rate of 40%, even when
all speakers’ lip information is incomplete. For a visual frame
loss rate of 80%, the performance almost does not degrade if
only interfering speakers’ lip information is partially missing.
However, both ESTOI and PESQ significantly decrease when
80% of target speaker’s lip images are missing. This decrease
becomes more moderate if the interfering speakers‘ lip informa-
tion is complete, which indicates that the presence of interfering
speakers’ lip information improves the robustness against lost
visual frames. Moreover, we would like to point out that our
system still works even if 80% of all speakers’ lip frames are
missing. This is likely due to the use of angle features (see
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TABLE V
INVESTIGATION OF THE IMPACT OF VISUAL INFORMATION ON SEPARATION AND DEREVERBERATION IN THE JOINTLY TRAINED MODEL

TABLE VI
INVESTIGATION OF THE ROBUSTNESS AGAINST INCOMPLETE LIP INFORMATION

TABLE VII
INVESTIGATION OF THE ROBUSTNESS AGAINST REDUCED IMAGE RESOLUTION

Section III-C), which provide useful directional cues for the
target speaker.

E. Robustness Against Reduced Lip Image Resolution

The resolution of lip images can be low due to the poor
quality of the camera in practice. To investigate the robustness
of the proposed method against lower image resolution, we
reduce all speakers’ lip image resolution for the testing samples.
Specifically, we first downsample the lip images from 112× 112
to 64 × 64, and then upsample them back to 112 × 112. Such an
operation reduces the image resolution. As shown in Table VII,
the proposed model is robust against reduced image resolution.

VII. CONCLUDING REMARKS

In this study, we have proposed a two-stage multimodal
network for audio-visual separation and dereverberation in noisy
and reverberant environments, motivated by the fact that additive
interference (e.g. interfering speech and background noise) and
convolutive interference (e.g. room reverberation) distort target
speech in intrinsically different ways. A dilated CNN based
separation module, which takes both audio and visual inputs, is
employed to separate reverberant target speech from interfering
speech and background noise. The output of the separation
module is subsequently passed through a BLSTM based dere-
verberation module. The two modules are first trained separately
and then trained jointly to optimize a new multi-objective loss
function, which combines a time domain loss and a T-F domain
loss. Systematic evaluations show that our proposed two-stage
multimodal network consistently outperforms several one-stage
and two-stage baselines in terms of both objective intelligibil-
ity and perceptual quality. We find that the proposed network
substantially improves ESTOI and PESQ over the unprocessed
mixtures. In addition, our network architecture can accept visual
streams from an arbitrary number of interfering speakers, which

is more advantageous than the multimodal networks that do not
allow the number of speakers to change from training to testing.

It should be noted that the proposed model is a noncausal
system, which utilizes a large amount of future information for
estimation. Such a model is inapplicable to real-time processing,
which is highly demanded by many real-world applications.
We have preliminarily investigated some causal and partially
causal models for real-time processing, with no or low latency.
For future work, we would devote more efforts to the design
of new multimodal network architectures for real-time speech
separation and dereverberation in far-field scenarios.
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