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Abstract—In mobile speech communication, speech signals can
be severely corrupted by background noise when the far-end talker
is in a noisy acoustic environment. To suppress background noise,
speech enhancement systems are typically integrated into mobile
phones, in which one or more microphones are deployed. In this
study, we propose a novel deep learning based approach to real-time
speech enhancement for dual-microphone mobile phones. The pro-
posed approach employs a new densely-connected convolutional
recurrent network to perform dual-channel complex spectral map-
ping. We utilize a structured pruning technique to compress the
model without significantly degrading the enhancement perfor-
mance, which yields a low-latency and memory-efficient enhance-
ment system for real-time processing. Experimental results suggest
that the proposed approach consistently outperforms an earlier
approach to dual-channel speech enhancement for mobile phone
communication, as well as a deep learning based beamformer.

Index Terms—Real-time speech enhancement, complex spectral
mapping, densely-connected convolutional recurrent network,
dual-microphone mobile phones.

I. INTRODUCTION

IN MOBILE communication, speech signals are corrupted
by background noise when the far-end talker is in a noisy

acoustic environment. In order to attenuate background noise,
speech enhancement algorithms have been integrated into most
mobile phones, where one or more microphones are deployed.
More microphones typically yield better enhancement results.
However, the number of the microphones is subject to practical
limitations such as the size, power consumption, and expense
of the array. Therefore, a dual-microphone configuration is a
common choice. In a typical dual-microphone setup, a primary
microphone is placed on the bottom of a mobile phone and a
secondary microphone on the top, as illustrated in Fig. 1.

In the past decade, a variety of algorithms have been devel-
oped for dual-channel speech enhancement. Yousefian et al. [43]
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Fig. 1. Illustration of a dual-microphone configuration of mobile phones.

developed a Wiener filter that exploits the power level difference
(PLD) between the signals received by two microphones. The
experimental results show that their approach improves speech
quality. Jeub et al. [16] designed a PLD-based noise estimator,
which uses the normalized inter-channel PLD as speech pres-
ence probability (SPP). The estimated noise spectrum is used
to compute a spectral gain, which is subsequently applied to
the noisy spectrum to derive the enhanced spectrum. The results
show that their approach outperforms the approach in [43], in
terms of objective intelligibility. A similar method was proposed
in [44], in which the power level ratio of the dual-channel
signals is used to calculate a spectral gain. This method produces
comparable results to the PLD-based method in [16], while more
efficient computationally. More recently, Fu et al. [8] developed
a SPP-based noise correlation matrix estimator, where the inter-
channel posteriori signal-to-noise ratio difference (PSNRD) is
utilized to estimate SPP. The estimated noise correlation matrix
is subsequently used to derive a minimum variance distortionless
response (MVDR) spatial filter for noise reduction. Their results
show that the PSNRD method is more robust than the PLD
method in [16] against different sensitivities of two micro-
phones. Other related studies include [22], [19] and [3].

Speech enhancement has been recently formulated as super-
vised learning, inspired by the concept of time-frequency (T-F)
masking in computational auditory scene analysis (CASA) [36].
Thanks to the use of deep learning, the performance of su-
pervised speech enhancement has been dramatically improved
in the past decade [37]. Compared to the dual-channel setup,
speech enhancement for mobile phones needs to consider short
speaker-microphone distances and head shadow effects. To our
knowledge, the first deep learning based enhancement method
for dual-microphone mobile phones was designed by López-
Espejo et al. [18], where a deep neural network (DNN) is
trained to produce a binary mask from the log-mel features of
the noisy array signals. A truncated-Gaussian based imputation
algorithm is used to produce the enhanced spectrum from the
estimated mask. In a subsequent study [20], they trained a DNN
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to estimate the noise spectrum from the log-mel features of
dual-channel noisy speech. The noise estimate, along with the
primary-channel noisy signal, is used to produce the primary-
channel enhanced spectrum by a vector Taylor series feature
compensation method. The enhanced spectrum is subsequently
passed into a speech recognizer for evaluation. Their results
show that the DNN-based approach yields significantly higher
word accuracy than several conventional approaches.

Real-time speech enhancement is needed for mobile commu-
nication, and it poses several requirements on model design.
First, the model should use no or few future time frames. For
example, causal DNNs for speech enhancement have been re-
cently developed [23], [31]. Second, the model should not have
a high computational cost for the sake of processing latency
and power consumption. Third, memory consumption should
fit the given capacity of mobile phones. It should be noted that
memory consumption has two main aspects, i.e. to store trainable
parameters and intermediate results (e.g. the activations from
lower DNN layers).

In a preliminary study [33], we recently proposed a
convolutional recurrent network (CRN) for real-time dual-
microphone speech enhancement, motivated by an earlier study
on CRN [31]. The proposed method produces a phase-sensitive
mask (PSM) [6], [39] from magnitude-domain intra- and inter-
channel features. The present study extends the CRN-based
method to improve its robustness. The present work differs from
the preliminary study in the following main aspects. First, we
extend the CRN architecture into a densely-connected CRN
(DC-CRN). Specifically, each convolutional or deconvolutional
layer is replaced by a densely-connected block. In addition, each
skip connection between the encoder and the decoder is replaced
by a densely-connected block. Second, we train the DC-CRN to
learn a mapping from the real and imaginary spectrograms of
the dual-channel noisy mixture to those of the primary-channel
clean speech signal, inspired by recent advances in complex-
domain speech enhancement [7], [32], [42]. Third, we propose
a structured pruning technique to compress the DC-CRN, which
significantly reduces the model size without significantly affect-
ing the enhancement performance. Fourth, we simulate array
signals by spatializing speech and noise signals by covering a
reasonable range of source-array distances and including the
head shadow effect. Such a data simulation method accounts for
various ways of holding a mobile phone, more robust than using
close-talk inter-channel relative transfer functions [33].

The rest of this paper is organized as follows. In Section II, we
formulate dual-channel speech enhancement for mobile phones.
In Section III, we describe our proposed approach in detail.
Experimental setup is provided in Section IV. In Section V,
we present experimental and comparison results. Section VI
concludes this paper.

II. DUAL-CHANNEL SPEECH ENHANCEMENT FOR MOBILE

PHONE COMMUNICATION

Given a dual-channel signal recorded in a noisy and reverber-
ant environment, the signal model can be formulated as

y(q)[k] = s[k] ∗ h(q)
s [k] +

∑
j

nj [k] ∗ h(q)
nj

[k], (1)

where s and nj denote the speech source and the j-th noise
source, respectively, and hs and hnj

the room impulse responses
(RIRs) corresponding to the speech source and the j-th noise
source, respectively. Symbol ∗ represents the convolution oper-
ation, k the time sample index, and q ∈ {1, 2} the microphone
index. In the short-time Fourier transform (STFT) domain, the
signal model can be written as

Y(m, f) = c(f)S1(m, f) +R(m, f) +N(m, f)

= [Y1(m, f), Y2(m, f)]T ∈ C2×1,
(2)

where S1 ∈ C is the STFT of the target speech signal captured
by the primary microphone (microphone 1 in this case), c(f) =
[1, c(f)]T ∈ C2×1 is the relative transfer function between the
two microphones, and R and N denote the STFTs of speech
reverberation and reverberant noise, respectively. Y1 and Y2 are
the STFTs of y(1) and y(2), respectively. Symbols m and f
index the time frame and the frequency bin, respectively. In
this study, we aim to extract the target speech signal captured by
the primary microphone, i.e. s1 = F−1{S1}, where F−1 repre-
sents the inverse STFT (iSTFT). We focus on noise reduction
and assume that reverberation energy is relatively weak, which
is reasonable with relatively short speaker-phone distances in
mobile communication.

There are broadly two kinds of mobile phone use scenarios:
hand-held and hands-free. In a hand-held scenario, the primary
microphone is typically close to the talker’s mouth and the
secondary microphone close to the ear. In a hands-free scenario,
the mobile phone can be placed at some distance, e.g. on a desk in
front of the talker. Note that the terms hand-held and hands-free
in this paper should not be interpreted literally, but are meant to
differentiate the locations of the two microphones relative to the
head.

In the hand-held scenario, the sound level of the speech
signal coming from the talker’s mouth is reduced by the head
obstruction, prior to reaching the secondary microphone near
the ear. This head shadow results in a difference between the
received speech levels at the two microphones. An example of
the power spectral density (PSD) ratio of the primary channel
to the secondary channel is shown in Fig. 2(a), where the
dual-channel signals are recorded in a hand-held setup without
background noise. It can be observed that the primary signal has
a larger PSD than the secondary signal in almost all frequency
bands. In the hands-free scenario without the head shadow
effect, as illustrated in Fig. 2(c), the speech level at the primary
channel is not always higher than that at the secondary channel.
In both scenarios, the inter-channel intensity difference (IID)
is a useful spatial cue for speech enhancement, corresponding
to the magnitude difference between Y1 and Y2 (see Eq. (2)),
which is leveraged by most studies for dual-channel speech
enhancement. Another useful spatial cue is the inter-channel
phase difference (IPD) or inter-channel time difference (ITD),
which is highly correlated with the direction of arrival with
respect to the dual-channel array. Specifically, the IPD can be
calculated as θy1

− θy2
, where θy1

and θy2
are the phases of Y1

and Y2, respectively. Figs. 2(b) and 2(d) show the IPDs, wrapped
into [−π, π], for the corresponding hand-held and hands-free
scenarios, respectively.
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Fig. 2. (Color Online). Examples of inter-channel PSD ratio and phase differ-
ence in (a)-(b) hand-held and (c)-(d) hands-free scenarios.

Both IID and IPD (or ITD) can be implicitly exploited by
learning a multi-channel complex spectral mapping [41], where
the IID and the IPD are encoded in the dual-channel complex
spectrogram of the noisy mixture. In contrast to conventional
beamforming that typically exploits second-order statistics of
multiple channels [34], such an approach has the potential to
extract all discriminative cues in dual-channel complex-domain
inputs through deep learning. In addition, complex spectral map-
ping simultaneously enhances magnitude and phase responses
of target speech [32], which is advantageous over magnitude-
domain approaches that ignore phase.

III. MODEL DESCRIPTION

In this section, we first introduce our proposed densely-
connected convolutional recurrent network for dual-channel
complex spectral mapping, and then elaborate the network con-
figurations for a noncausal enhancement system with a large
model size, as well as a causal and lightweight version for real-
time processing. We also propose a structured pruning technique

Fig. 3. (Color Online). Diagram of the DC-CRN for dual-channel complex
spectral mapping.

to compress the DC-CRN without significantly sacrificing the
enhancement performance.

A. Densely-Connected Convolutional Recurrent Network

In [32], we have recently developed a gated convolutional
recurrent network (GCRN) to perform complex spectral map-
ping for monaural speech enhancement, which substantially
outperforms an earlier convolutional neural network (CNN) that
learns complex spectral mapping [7]. The GCRN has an encoder-
decoder architecture with skip connections between the encoder
and the decoder. A two-layer long short-term memory (LSTM) is
inserted between the encoder and decoder to aggregate temporal
contexts. The encoder is a stack of gated convolutional layers,
and the decoder a stack of gated deconvolutional layers. Such an
architecture benefits from both the feature extraction capability
of the convolutional autoencoder and the sequential modeling
capability of the LSTM, and can effectively capture the local
and global spectral structure in a spectrogram.

This study develops the CRN architecture for dual-channel
complex spectral mapping. The diagram of the proposed ap-
proach is shown in Fig. 3. The input complex spectrograms are
computed by applying STFT to the time-domain waveforms
of the dual-channel mixtures. We concatenate the real and
imaginary components of the dual-channel spectrograms [42],
which amount to a 3-dimensional (3-D) representation with
four channels. Subsequently, the 3-D representation is passed
into a convolutional encoder, which comprises a stack of five
convolutional densely-connected (DC) blocks. The 3-D rep-
resentation learned by the encoder is reshaped to a sequence
of 1-D features, which is then modeled by a recurrent neural
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Fig. 4. (Color Online). Diagrams of the densely-connected block (a) and the
gated convolution/deconvolution (b). The symbol

⊗
represents the element-

wise multiplication.

network (RNN). We reshape the output of the RNN back to a
3-D representation and subsequently feed it into a decoder, i.e. a
stack of five deconvolutional DC blocks. The output of the last
block is split into two equal-sized 3-D representations along
the channel dimension, one for the real spectrum estimation
and the other for the imaginary spectrum estimation. These
two 3-D representations are individually reshaped to a sequence
of 1-D features, and then passed through a linear projection
layer to produce estimates of the real and imaginary components
of the clean spectrogram, respectively. We apply the iSTFT to
the estimated real and imaginary spectrograms to resynthesize
the time-domain waveform of enhanced speech for the primary
channel.

Unlike the skip connections that directly bypass the output of
each encoder layer to the corresponding decoder layer in [33]
and [32], a convolutional DC block is employed to process
the features learned by each DC block in the encoder, prior to
concatenating them with the output of the corresponding DC
block in the decoder. Such a design is inspired by U-Net++ [47]
for image segmentation, which uses DC blocks to bridge the
semantic gap between the feature maps of the encoder and the
decoder prior to fusion. The introduction of DC block based skip
pathways can enrich the feature maps from the encoder, which
would help to increase the similarity between the feature maps
from the encoder and the decoder and thus improves their fusion.

As shown in Fig. 4(a), we propose a dense connectivity pattern
in each DC block to improve the information flow between
layers, i.e. introducing direct connections from any layer to all
subsequent layers. In other words, each layer receives the outputs
of all preceding layers:

zl = Hl ([z0, . . . , zl−1]) , l = 1, . . . , L, (3)

where Hl denotes the mapping function defined by the l-th
layer in the DC block, and [·, . . . , ·] the concatenation operation.
The output of the l-th layer is represented by zl, and z0 is
the input to the DC block. By encouraging feature reuse, the
dense connections exploit the differences learned by different
preceding layers. In this study, we setL to 5. Specifically, each of
the first four layers in a DC block consists of a 2-D convolutional

layer successively followed by batch normalization [15] and
exponential linear activation function [4]. The last layer in the
DC block is a gated convolutional or deconvolutional layer as
illustrated in Fig. 4(b), which incorporates the gated linear units
developed in [5]. Note that “Conv-DC-Block” in Fig. 3 performs
gated convolution in the last layer, and “Deconv-DC-Block”
gated deconvolution in the last layer.

It should be noted that using an RNN for sequential modeling
is typically more memory-efficient than time-dilated convolu-
tions [24], [30] or temporal attention [17], particularly with
strict memory limitation. The use of time-dilated convolutions
necessitates storing intermediate activations for many past time
steps in the receptive fields of all layers. Similarly, it is necessary
to store intermediate activations from many past time steps in
order to perform temporal attention. In contrast, an RNN only
needs the input at the current time step and the hidden state from
the last time step to calculate the output at the current step. There-
fore, the RNN would demand far less working memory than a
comparably sized DNN based on time-dilated convolutions or
temporal attention, even if the RNN may have more trainable
parameters than the DNN.

B. Network Configurations

1) Noncausal DC-CRN: In order to systematically examine
the proposed architecture, we first configure the DC-CRN into
a noncausal system with a reasonably large model size. In each
convolutional or deconvolutional DC block, each of the first four
layers has 8 output channels with a kernel size of 1×3 (time ×
frequency), where a zero-padding of size 1 is applied to each
side of the feature maps along the frequency dimension. For
the DC blocks in the encoder and the decoder, the last layer in
each of them has a kernel size of 1×4, where a stride of 2 and a
zero-padding of 1 (for each side) is applied along the frequency
dimension. Note that the kernel size is set to 1×4 rather than
1×3 in order to alleviate the checkerboard artifacts [1], which
arise when the kernel size of a strided deconvolution is not
divisible by the stride. Moreover, the DC blocks in the encoder
have 16, 32, 64, 128 and 256 output channels successively, and
those in the decoder have 256, 128, 64, 32 and 16 output channels
successively. The convolutional DC blocks in the skip pathways
have the same hyperparameters as those in the encoder, except
that the last layer uses a stride of 1 and a kernel size of 1×3.
Similarly, these DC blocks have 16, 32, 64, 128 and 256 output
channels successively.

In this noncausal DC-CRN, the RNN used for sequential
modeling is a two-layer bidirectional LSTM (BLSTM), of which
each layer contains 640 units in each direction. As in [32], we
adopt a grouping strategy [9] to reduce the number of trainable
parameters in the BLSTM without significantly affecting the
performance. The number of groups is empirically set to 2.

2) Causal DC-CRN: A causal and small DC-CRN can be
easily derived by simply changing the network configurations.
First, we set the number of output channels of all DC blocks to
16, except that the last DC block in the decoder only has 2 output
channels. Second, we use a two-layer unidirectional LSTM for
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sequential modeling, which has 80 units in each layer. All other
settings are the same as in the noncausal DC-CRN.

C. Training Objective

Following [41], we train the DC-CRN to perform dual-
channel complex spectral mapping with a loss function as fol-
lows:

LRI+Mag =
1

M · F
∑
m,f

∣∣∣Ŝ(r)
1 (m, f)− S

(r)
1 (m, f)

∣∣∣
+
∣∣∣Ŝ(i)

1 (m, f)− S
(i)
1 (m, f)

∣∣∣
+
∣∣∣|Ŝ1(m, f)| − |S1(m, f)|

∣∣∣ , (4)

where Ŝ
(r)
1 , Ŝ(i)

1 , S(r)
1 and S

(i)
1 represent the real (r) and imag-

inary (i) components of the enhanced spectrogram Ŝ1 and the
clean spectrogramS1 for the primary channel, respectively. Here
‖ · ‖1 denotes the �1 norm, and M and F the number of time
frames and frequency bins respectively. The estimated spectral
magnitude is calculated from the estimated real and imaginary

spectra, i.e. |Ŝ1(m, f)| =
√
Ŝ
(r)
1 (m, f)2 + Ŝ

(i)
1 (m, f)2.

The inclusion of the magnitude loss term penalizes the mag-
nitude estimation error accompanied with the phase estimation
error, given that the magnitude and the phase are coupled in the
real and imaginary components. This penalty is beneficial due
to the relative importance of the magnitude over the phase [35].

D. Iterative Structured Pruning

To further reduce the number of trainable parameters, we
propose a structured pruning method to compress the causal DC-
CRN, without significantly sacrificing the enhancement perfor-
mance. Structured pruning is a class of coarse-grained parameter
pruning techniques, and it leads to more regular sparsity patterns
than unstructured pruning. For example, structured pruning can
remove an entire column of a weight matrix, unlike unstructured
pruning that prunes individual weights. The regularity of sparse
structure makes it easier to apply hardware acceleration [21].

To prune the DC-CRN, we define the pruning granularity as
follow. For each of the convolutional and deconvolutional layers,
the weights compose a 4-D tensor of shape C1×C2×K1×K2,
where C1 and C2 represent the output and input channel dimen-
sions respectively, and K1 and K2 the shapes of convolution
kernels. We treat each kernel (i.e. a K1×K2 matrix) as a weight
group for pruning. Moreover, each of the LSTM layers is defined
by the following equations:

it = σ(Wiixt + bii +Whiht−1 + bhi), (5)

ft = σ(Wifxt + bif +Whfht−1 + bhf ), (6)

gt = tanh(Wigxt + big +Whght−1 + bhg), (7)

ot = σ(Wioxt + bio +Whoht−1 + bho), (8)

ct = ft � ct−1 + it � gt, (9)

ht = ot � tanh(ct), (10)

where xt, gt, ct and ht denote the input, forget, cell and
output gates at time step t, respectively. Here W’s and
b’s represent weight matrices and bias vectors respectively,
and σ and � the sigmoid nonlinearity and the element-wise
multiplication respectively. In the implementation of LSTM,
the weight matrices for the four gates are typically con-
catenated, i.e. Wi = [Wii,Wif ,Wig,Wio] ∈ R4D1×D2 and
Wh = [Whi,Whf ,Whg,Who] ∈ R4D1×D1 , where D1 and
D2 are the output and input dimensions of the LSTM layer,
respectively. We treat each column of Wi and Wh as a weight
group for pruning. Similarly, we treat each column of the weight
matrix of each linear layer as a weight group for pruning. Since
the number of biases is small relative to that of weights, we only
prune weights.

Algorithm 1: Per-tensor Sensitivity Analysis.
Input: (1) Validation set V; (2) set Gl of all nonzero weight
groups in the l-th weight tensor W̃l, ∀l; (3) loss function
LRI+Mag(V,Θ), where Θ is the set of all nonzero trainable
parameters in the model; (4) predefined tolerance value α.

Output: Pruning ratio βl for weight tensor W̃l, ∀l.
1: for each tensor W̃l do
2: for β in {0%, 5%, 10%, . . . , 90%, 95%, 100%} do
3: Let U ⊆ Gl be the set of the β(%) of nonzero

weight groups with the smallest �1 norms in tensor
W̃l;

4: Calculate IU = LRI+Mag(V,Θ|g = 0, ∀g ∈
U)− LRI+Mag(V,Θ);

5: if IU > α then
6: βl ← β − 5%;
7: break
8: end if
9: end for

10: if βl is not assigned any value then
11: βl ← 100%;
12: end if
13: end for
14: return βl for weight tensor W̃l, ∀l

In order to achieve a high compression rate, we adopt a group
sparse regularization technique [27] to impose the group-level
sparsity of the weight tensors. Specifically, we introduce the
following sparse group lasso (SGL) [28] penalty:

RSGL =
λ1

n(W)

∑
w∈W
|w|+ λ2

n(G)
∑
g∈G

√
pg ‖g‖2 , (11)

where W and G denote the set of all weights and that of all
weight groups, respectively. The function n(·) calculates the
cardinality of a set, and ‖ · ‖2 the �2 norm. The number of
weights in each weight group g is represented by pg. Here λ1

and λ2 are predefined weighting factors. Hence, the new loss
function can be written as

L = LRI+Mag +RSGL. (12)

The importance of a specific set U of weight groups can be
quantified by the error induced by removing (or zeroing out) it.
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Fig. 5. Illustration of diffuse babble noise simulation.

This induced error can be measured as the increase in the loss
on a validation set V:

IU = LRI+Mag(V,Θ|g = 0, ∀g ∈ U)− LRI+Mag(V,Θ), (13)

where Θ is the set of all trainable parameters in the model, and
U can be any subset of G. To determine the pruning ratio for
each weight tensor, we perform a per-tensor sensitivity analysis
following Algorithm 1. Subsequently, we perform group-level
pruning as per tensor-wise pruning ratios, and then fine-tune
the pruned model. We evaluate the fine-tuned model on the
validation set by two standard metrics, i.e. short-time objective
intelligibility (STOI) [29] and perceptual evaluation of speech
quality (PESQ) [26]. This procedure is repeated until the number
of pruned weights becomes trivial in an iteration or a significant
degradation of STOI or PESQ is observed on the validation
set. Note that the parameter set Θ becomes smaller after each
iteration.

IV. EXPERIMENTAL SETUP

A. Data Preparation

In our experiments, we use the training set of the WSJ0
corpus [10] for evaluation, which includes 12776 utterances
from 101 speakers. These speakers are split into three groups
for training, cross validation and testing, which contain 89, 6
(3 males and 3 females) and 6 (3 males and 3 females), re-
spectively. Specifically, these groups include 11084, 846 and
846 clean utterances for creating the training, validation and test
sets, respectively. We simulate a rectangular room with a size
of 10×7×3 m3 using the image method [2]. The target speech
source (mouth) is located at the center of the room, while the
primary microphone is placed on a sphere centered at the target
speech source with a radius randomly sampled between 0.01 m
and 0.15 m. Such a distance range covers both hand-held and
hands-free scenarios. We fix the geometry of the dual-channel
microphone array, where the distance between microphones
is 0.1 m. Thus the location of the secondary microphone is
randomly chosen on a sphere with a radius of 0.1 m, which
is centered at the primary microphone. The reverberation time
(T60) is randomly sampled between 0.2 s and 0.5 s. Following
this procedure, we simulate a set of 5000 dual-channel RIRs for
training and cross validation, and another set of 846 dual-channel
RIRs for testing.

As illustrated in Fig. 5, we simulate a diffuse babble noise in
the following way. We first concatenate the utterances spoken by
each of the 630 speakers in the TIMIT corpus [11], and then split

them into 480 and 150 speakers for training and testing. Follow-
ing [45], we randomly select 72 speech clips from 72 randomly
chosen speakers, and place them on a horizontal circle centered
at and with the same height as the primary microphone, where
the azimuths range from 0◦ to 355◦ with 5◦ steps. The distance
between the primary microphone and each of the interfering
sources is 2 m.

We create a training set including 40 000 mixtures, each
of which is simulated by mixing a diffuse babble noise and a
randomly sampled WSJ0 utterance convolved with a randomly
selected RIR. To create the validation set, we convolve each of
the 846 validation utterances with a randomly selected RIR, and
then mix the reverberant speech signal with a random cut of
diffuse babble noise at each channel. In order to mimic the head
shadow effect, we downscale the amplitude of the speech signal
at the secondary channel prior to mixing, where the downscaling
ratio is randomly sampled between −10 and 0 dB. For both
training and validation data, the SNR is randomly sampled
between −5 and 0 dB, where the SNR is with respect to the
reverberant speech signal and the reverberant noise signal at the
primary channel. Similarly, we create a test set consisting of 846
mixtures for each of four SNRs, i.e. −5, 0, 5 and 10 dB.

In our experiments, all signals are sampled at 16 kHz. We
rescale each noisy mixture by a factor, such that the root
mean square of the mixture waveform is 1. The same factor
is used to rescale the corresponding target speech waveform.
Such noncausal signal level normalization is applied because
we focus on speech enhancement and assume that the root mean
square power of all input signals is the same. Thus the causal
models can benefit from this noncausal normalization in our
experiments. Real applications may need a causal automatic
gain control for signal level normalization. Moreover, we use a
20-ms Hamming window to segment time-domain signals into
a set of frames, with a 50% overlap between adjacent frames.
A 320-point (16 kHz × 20 ms) discrete Fourier transform is
applied to each frame, yielding 161-D one-sided spectra.

B. Baselines

In our preliminary study [33], the PSM is used as the training
target, which is originally defined for the primary channel as
follows:

PSM1(m, f) = Re

{ |S1(m, f)|ejθs1
|Y1(m, f)|ejθy1

}

=
|S1(m, f)|
|Y1(m, f)| cos(θs1 − θy1

), (14)

where |S1(m, f)| and |Y1(m, f)| denote the spectral magnitudes
of clean speech and noisy speech within the T-F unit at frame m
and frequency f respectively, and θs1 and θy1

the phases of clean
speech and noisy speech within the unit respectively. Re{·}
computes the real component. In [33], however, a modified
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TABLE I
COMPARISONS OF ALTERNATIVE MODELS IN STOI, PESQ AND SNR. HERE

√
INDICATES CAUSAL MODEL, AND ✗ INDICATES NONCAUSAL MODEL

version is used:

PSM2(m, f) = Re

{ |S1(m, f)|ejθs1
|Y1(m, f)|ejθy1−y2

}

=
|S1(m, f)|
|Y1(m, f)| cos(θs1 − θy1−y2

),

(15)

where θy1−y2
represents the phase of the noisy signal difference

between channels, i.e. y1 − y2. For PSM2, θy1−y2
is used to

resynthesize waveforms, which was shown to improve both
STOI and PESQ over using PSM1 and θy1

. An interpretation is
that the inter-channel PLD of speech signals is typically larger
than that of noise signals due to the head shadow in hand-held
scenarios. With a possible signal cancellation effect due to the
subtraction, y1 − y2 may have a higher SNR and thus cleaner
phase than y1.

In [33], a CRN is employed to estimate PSM2 from both intra-
channel features (i.e. |Y1| and |Y2|) and inter-channel features
(i.e. |Y1 − Y2| and |Y1 + Y2|). We refer to the approach in [33] as
“C-CRN-PSM2” (“C-CRN” indicates causal CRN), and another
version that estimates PSM1 as “C-CRN-PSM1”. In addition, we
train a noncausal version of each of these two baselines, where
the configuration of the CRN is changed as follows. The numbers
of output channels for the layers in the encoder are changed to
16, 32, 64, 128 and 256 successively, and those for each layer in
the decoder to 128, 64, 32, 16 and 1 successively. The two-layer
LSTM is replaced by a two-layer BLSTM, of which each layer
contains 512 units in each direction. These noncausal baselines
are denoted as “NC-CRN-PSM1” and “NC-CRN-PSM2”.

C. Training Methodology

The models are trained on 4-second segments using the
AMSGrad optimizer [25] with a minibatch size of 16. The
learning rate is initialized to 0.001, which decays by 0.98 every
two epochs. We apply gradient clipping with a maximum �2
norm of 5 during training. The validation set is used for both
selecting the best model among different epochs and performing
the sensitivity analysis prior to pruning.

For structured pruning, the initial values of λ1 and λ2 (see
Eq. (11)) are empirically set to 1 and 0.1, both of which decay by
10% every pruning iteration. We alternately prune and fine-tune
the causal DC-CRN for 6 iterations. The tolerance value α for
sensitivity analysis (see Algorithm 1) is set to 0.02.

V. EXPERIMENTAL RESULTS AND COMPARISONS

A. Model Comparison

Comprehensive comparisons among alternative models are
shown in Table I, in terms of STOI, PESQ and SNR, where
the numbers represent the averages over the test set in each
condition. The proposed models with noncausal and causal DC-
CRNs are denoted as “NC-DC-CRN-RI” and “C-DC-CRN-RI,”
respectively. The pruned DC-CRN model for the k-th iteration
is represented by “C-DC-CRN-RI-Pk”.

We can observe that using PSM1 yields similar results to using
PSM2, unlike the finding that PSM2 produces significantly better
results than PSM1 in [33]. This is likely because θy1−y2

is not
always cleaner than θy1

due to the variety of inter-channel decay
ratios and no head shadow in hands-free scenarios. Moreover,
our proposed approach substantially outperforms the approach
in [33] in all the metrics. At -5 dB SNR, for example, “NC-
DC-CRN-RI” improves STOI by 7.6%, PESQ by 0.89 and
SNR by 4.77 dB, over “NC-CRN-PSM2”. Similar improvements
are observed for “C-DC-CRN-RI” over “C-CRN-PSM2”. We
additionally compare our approach with two ideal masks, i.e.
the PSM (PSM1) and the ideal ratio mask (IRM) [38], defined
as

IRM(m, f) =
|S1(m, f)|

|S1(m, f)|+ |H1(m, f) +N1(m, f)| , (16)

whereH1 andN1 are the STFTs of reverberation and reverberant
noise at the primary channel, respectively. As shown in Table I,
our noncausal enhancement system (“NC-DC-CRN-RI”) pro-
duces better results than the IRM in terms of all the three metrics.
In addition, our system yields slightly lower STOI and PESQ but
higher SNR than the PSM.

To demonstrate the generalization capability of the trained
models, we create an additional test set by mixing real-recorded
speech signals and simulated diffuse noise signals at -5, 0, 5
and 10 dB SNRs. Specifically, the diffuse noise is simulated
using the same recipe as described in Section IV-A, where the
noise source signals are recorded in eight different environments.
The speech signals are recorded by a dual-microphone mobile
phone (Meizu 15) that is mounted on a dummy head. The
source signals1 contain 20 utterances from four speakers (two

1[Online] Available: https://docbox.etsi.org/stq/Open/TS%20103%20106%
20Wave%20files/Annex_C_Dynastat%20Speech%20Data/
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TABLE II
EVALUATION ON REAL-RECORDED SPEECH SIGNALS

Fig. 6. The percent of the original number of trainable parameters at differ-
ent pruning iterations (a), and corresponding STOI and PESQ scores on the
validation set (b).

males and two females), where each speaker reads five IEEE
sentences [14]. The total duration of these utterances is roughly
80 seconds. They are mixed with the eight types of noises at
the four SNRs, which amount to a set of noisy speech signals
with a total duration of roughly 43 minutes (≈ 80×8×4 s). As
shown in Table II, “C-DC-CRN-RI” and “C-DC-CRN-RI-P6”
produce significantly higher STOI and PESQ than “C-CRN-
PSM1”. Moreover, “C-DC-CRN-RI-P6” produces substantial
improvements in STOI and PESQ over unprocessed mixtures,
consistent with our finding from Table I. This suggests the
robustness of our training data simulation method described in
Section IV-A.

Furthermore, we compare the pruned DC-CRN models of
different pruning iterations. As presented in Table I, the causal
DC-CRN originally has 290.44 K trainable parameters. After
6 iterations of pruning, the number of trainable parameters in
the DC-CRN becomes 103.07 K, which is comparable to that of
the CRN in [33], i.e. 73.15 K. The model size reduction over
pruning iterations is shown in Fig. 6(a). Compared with the
original model, the performance of the pruned model after 6
iterations degrades only slightly. Take, for example, the 0 dB
SNR case. Iterative pruning decreases STOI by 0.72%, PESQ
by 0.05 and SNR by 0.53 dB. Fig. 6(b) shows the STOI and
PESQ scores on the validation set over pruning iterations.

TABLE III
EFFECTS OF DENSE CONNECTIVITY AT -5 DB SNR

Moreover, we calculate the number of multiply-accumulate
(MAC) operations on a 4-second noisy mixture, which is another
common metric for evaluating model complexity. The number
of MAC operations decreases from 1.97 G for “C-DC-CRN-
RI” to 502.40 M for “C-DC-CRN-RI-P6”. Thus the average
number of MAC operations for processing a 1-second input
signal is 125.60 M, which is amenable to mobile phones on
the market. We additionally measure the computation time for
“C-DC-CRN-RI-P6” on a Lenovo ThinkPad X1 laptop with Intel
Core i7-10510U@1.80 GHz processors, and the average time
of processing a 20-ms time frame is 2.78 ms, demonstrating
real-time feasibility.

B. Ablation Study of Dense Connectivity

To investigate the contribution of dense connectivity in the
DC-CRN, we conduct an ablation study at -5 dB SNR, as
shown in Table III. Several variants of the causal DC-CRN are
compared: (i) replacing the DC block based skip pathways by
skip connections as in [33]; (ii) replacing each DC block in
the encoder and the decoder by a corresponding gated convo-
lutional or deconvolutional layer, as in [32]; (iii) doing both (i)
and (ii). We can see that all these variants underperform the
proposed causal DC-CRN, which suggests the effectiveness of
dense connectivity. Without dense connectivity in the encoder
and the decoder, for example, STOI decreases by 1.31% and
PESQ by 0.14. Only removing the dense connectivity in the
skip pathways does not significantly degrade the enhancement
performance, if the DC blocks in the encoder and the decoder are
preserved. However, going from (ii) to (iii) results in a significant
performance loss. This is likely because the dense connectivity
in the skip pathways compensates for the reduced representation
power without DC blocks in the encoder and the decoder.

C. Inter-Channel Features

The approach in [33] exploits both intra- and inter-channel
features in the magnitude domain, while our proposed approach
performs dual-channel complex spectral mapping without ex-
plicitly using any inter-channel features. We now investigate the
inclusion of inter-channel features for both these approaches.
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TABLE IV
INVESTIGATION OF INTER-CHANNEL FEATURES FOR MAGNITUDE- AND

COMPLEX-DOMAIN APPROACHES. “ICFS” REPRESENT THE

INTER-CHANNEL FEATURES

As shown in Table IV, the inclusion of inter-channel features
significantly improves STOI, PESQ and SNR for the magnitude-
domain approaches. For our approach based on complex spectral
mapping, we use the real and imaginary components of Y1 − Y2

and Y1 + Y2 as the inter-channel features. With multi-channel
complex spectral mapping, the explicit use of these inter-channel
features does not produce performance gain, as shown in Ta-
ble IV. Unlike the magnitude spectrograms, the complex spec-
trograms encode both magnitude and phase information. Hence
inter-channel features can be captured implicitly through DNN
training that learns multi-channel complex spectral mapping,
consistent with [41] which demonstrates the effectiveness of
multi-channel to single-channel complex spectral mapping for
speech dereverberation.

D. Comparison With Beamforming

We now compare the proposed approach with DNN-based
beamforming (BF) [12], [13], [46]. Following [40], we formulate
an MVDR beamformer, where the speech and noise covariance
matrices are estimated as

Φ̂s(f) =
∑
m

η(m, f)∑
m η(m, f)

Y(m, f)Y(m, f)H , (17)

Φ̂v(f) =
∑
m

ξ(m, f)∑
m ξ(m, f)

Y(m, f)Y(m, f)H , (18)

where (·)H denotes the conjugate transpose, and η(m, f) and
ξ(m, f) the weighting factors representing the importance of
each T-F unit for the covariance matrix computation. These
weighting factors are calculated as the product of estimated T-F
masks for different channels:

η(m, f) =
D∏
i=1

M̂i(m, f), (19)

ξ(m, f) =

D∏
i=1

(1− M̂i(m, f)), (20)

where D = 2 is the number of channels, and M̂i(m, f) the ratio
mask for the i-th microphone. These ratio masks are individually
estimated by a noncausal DC-CRN that is monaurally trained to
estimate the IRM for each channel. We treat the primary channel
as the reference channel, and estimate the inter-channel relative

TABLE V
COMPARISONS WITH BEAMFORMING IN MAGNITUDE AND COMPLEX DOMAINS

AT -5 AND 0 DB SNRS

transfer function (i.e. steering vector) as

r̂(f) = P{Φ̂s(f)} = [r̂1(f), r̂2(f)]
T , (21)

ĉ(f) =
r̂(f)

r̂1(f)
, (22)

where P{·} computes the principal eigenvector. The MVDR
filter is then calculated as

ŵ(f) =
Φ̂v(f)

−1ĉ(f)
ĉ(f)HΦ̂v(f)−1ĉ(f)

, (23)

and the enhanced spectrogram is obtained by Ŝ(m, f) =
ŵ(f)HY(m, f). To improve the enhancement performance,
the monaural DC-CRN trained for IRM estimation is used as
a post-filter (PF). As shown in Table V, this masking-based
beamforming algorithm outperforms a noncausal DC-CRN that
estimates the IRM from the magnitude spectrograms of the two
channels, in terms of both STOI and PESQ.

In addition, we formulate a variant of the aforementioned
MVDR beamformer following [41], where the speech and noise
covariance matrices are estimated as

Φ̂s(f) =
1

M

M∑
m=1

Ŝ(m, f)Ŝ(m, f)H , (24)

Φ̂v(f) =
1

M

M∑
m=1

V̂(m, f)V̂(m, f)H , (25)

where M is the number of time frames. The complex spectro-
gram Ŝ is estimated by performing a monaural complex spectral
mapping using a noncausal DC-CRN. Then the estimated noise
spectrogram is calculated as V̂ = Y − Ŝ. Akin to masking-
based beamforming, we obtain the spatial filter using (21)–(23).
The DC-CRN for monaural complex spectral mapping is used as
a post-filter. As shown in Table V, our proposed approach outper-
forms the beamformer in terms of both STOI and PESQ, which
further suggests that dual-channel complex spectral mapping
can effectively exploit spatial cues encoded in the dual-channel
complex spectrogram.

VI. CONCLUSION

In this study, we have proposed a novel framework for dual-
channel speech enhancement on mobile phones, which employs
a new causal DC-CRN to perform dual-channel complex spectral
mapping. By applying an iterative structured pruning technique,
we derive a low-latency and memory-efficient enhancement

Authorized licensed use limited to: The Ohio State University. Downloaded on June 06,2021 at 02:03:51 UTC from IEEE Xplore.  Restrictions apply. 



1862 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

system that is amenable to real-time processing on mobile
phones. Evaluation results demonstrate that the proposed ap-
proach significantly outperforms an earlier method for speech
enhancement for dual-microphone mobile phones. Moreover,
our approach consistently outperforms a DNN-based beam-
former, which suggests that multi-channel complex spectral
mapping can effectively extract and utilize spatial cues encoded
in the multi-channel complex spectrogram.
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