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Abstract
Cochannel speech separation is the task of separating two
speech signals from a single mixture. The task becomes even
more challenging if the speech mixture is further corrupted
by background noise. In this study, we focus on a gender-
dependent scenario, where target speech is from a male speak-
er and interfering speech from a female speaker. We pro-
pose a two-stage separation strategy to address this problem in
a noise-independent way. In the proposed system, denoising
and cochannel separation are performed successively by two
modules, which are based on a newly-introduced convolution-
al neural network for speech separation. The evaluation results
demonstrate that the proposed system substantially outperforms
one-stage baselines in terms of objective intelligibility and per-
ceptual quality.
Index Terms: noisy cochannel speech separation, gated resid-
ual networks, ideal ratio mask, denoising, cochannel separation

1. Introduction
Cochannel speech separation aims to separate the speech of
interest (or target speech) from interfering speech [1]. This
difficult problem becomes more challenging when cochannel
speech is further corrupted by background noise. Applications
such as hearing aids and automatic speech recognition (ASR)
suffer from severe performance degradation under such real-
world conditions. We refer to noisy cochannel speech separa-
tion as the task of separating target speech from both interfering
speech and background noise.

Cochannel speech separation can be formulated as a super-
vised learning problem, where a mapping from acoustic features
of cochannel speech to a time-frequency (T-F) mask or spectral
magnitudes of target speech is learned. Huang et al. [2] first in-
troduced deep neural networks (DNNs) to deal with cochannel
separation. In their method, a masking layer is added to the net-
work, which produces the spectra of the two estimated sources.
Du et al. [3] proposed a DNN to estimate the log power spec-
trum of target speech from that of a cochannel mixture. Subse-
quently, they trained a DNN to map a cochannel mixture to the
spectrum of the target speaker as well as that of an interfering
speaker [4] [5]. Different from [2], they addressed a more com-
plex situation, where the interfering speakers are different be-
tween training and test although the same target speaker is used
for both training and test. More recently, Zhang et al. [6] devel-
oped a deep ensemble network to address speaker-dependent
and target-dependent separation. In their study, multi-context
networks were employed to integrate temporal information at d-
ifferent resolutions. Specifically, they constructed an ensemble
by stacking multiple modules, each of which performs multi-
context masking or mapping. Moreover, Healy et al. [7] utilized
a DNN to deal with speaker-dependent cochannel separation.

The DNN was trained to estimate the ideal ratio mask (IRM)
for a male target speaker in the presence of a female interfering
speaker. They found that the trained DNN provided substantial
speech intelligibility improvements for hearing-impaired listen-
ers.

In this study, we investigate supervised noisy cochannel
speech separation in a gender-dependent scenario, where tar-
get speech is from a male speaker and interfering speech from a
female speaker. Inspired by recent research [8] on noisy and re-
verberant speech enhancement, we believe that it is likely more
effective to address denoising and cochannel separation in sep-
arate stages. In other words, we first separate cochannel speech
and background noise, and then perform cochannel separation
to reconstruct the time-domain waveforms of the two sources.
We remove background noise in the first stage as the properties
of speech and nonspeech noise are intrinsically different.

Additionally, motivated by our recent work on dilated con-
volutions and gating mechanisms [9], we propose to employ
a gated residual network (GRN) with dilated convolutions to
construct the two-stage system with utterance-level training. To
compare with alternative modeling, we build two one-stage sys-
tems with the same GRN as the baselines, where denoising and
cochannel separation are addressed simultaneously. These sys-
tems are evaluated on both trained speakers and untrained s-
peakers in a noise-independent scenario. We find that the two-
stage system consistently outperforms the one-stage baselines
in terms of objective speech intelligibility and quality.

The rest of this paper is organized as follows. In Section 2,
we describe our proposed algorithm in detail. The experimental
setup and results are presented in Section 3. We conclude this
paper in Section 4.

2. Algorithm description
Our proposed two-stage separation system comprises two mod-
ules, i.e. a denoising module and a cochannel separation mod-
ule. A 62-layer GRN proposed in [9] is adopted to build the
modules.

2.1. Problem formulation

Let s1(t), s2(t) and n(t) denote target speech, interfering
speech, and background noise, respectively. Then the noisy
speech mixture can be represented by

y(t) = s(t) + n(t) = s1(t) + s2(t) + n(t) (1)

where s(t) = s1(t) + s2(t) denotes cochannel speech. Given
y(t), the goal of noisy cochannel speech separation is to recover
s1(t) and s2(t). In this study, the energy of target speech and
interfering speech is equally strong. In other words, the target-
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Figure 1: Network architecture of the GRN that was developed
in [9].

to-interferer ratio (TIR) is 0 dB, where the TIR is defined by

TIR = 10 log

∑
t s2

1(t)∑
t s2

2(t)
(2)

To avoid potential confusion, we refer to speech-to-noise ra-
tio (SNR) as the measure that compares the level of cochannel
speech to that of background noise. It is calculated as

SNR = 10 log

∑
t[s1(t) + s2(t)]

2

∑
t n2(t)

(3)

2.2. Gated residual network

In this study, we use the gated residual network in [9] to con-
struct the separation system. The GRN is based on dilated con-
volutions, which can significantly expand receptive fields. It ad-
ditionally incorporates gated linear units and residual learning.
Fig. 1 depicts the GRN architecture. The patterns along the fre-
quency direction in the input magnitude spectrum are captured

by frequency-dilated convolutions. Subsequently, a bunch of
residual blocks are employed to perform time-dilated convolu-
tions, which systematically aggregate temporal contexts. The
high-level features learned by these residual blocks are then fed
into a few convolutional layers with size-1 kernels to predict the
target.

2.3. Denoising stage

Given a noisy speech mixture, the denoising module aims to
separate cochannel speech from background noise. A T-F mask
typically serves as the training target for noise suppression in
supervised speech separation [10]. During inference, the esti-
mated T-F mask is applied to the T-F representation of the noisy
mixture to derive that of the enhanced speech. The enhanced
T-F representation is subsequently used to reconstruct the time-
domain waveform of the enhanced speech. The IRM [11] is a
frequently used T-F mask:

IRM(m, f) =

√
S(m, f)2

S(m, f)2 + N(m, f)2
(4)

where S(m, f)2 and N(m, f)2 represent speech energy and
noise energy within a T-F unit at time frame m and frequency
channel f , respectively.

As Fig. 2(a) illustrates, the denoising module in our pro-
posed system employs a GRN to predict the IRM for noise re-
duction. The estimated ratio mask is subsequently applied to the
spectral magnitudes of a noisy mixture to obtain the enhanced
spectral magnitudes for the next stage processing.
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Figure 2: Diagrams of the denoising module and the channel
separation module.
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2.4. Cochannel separation stage

Once background noise is removed from a noisy mixture, one
can perform cochannel speech separation to recover the two
speech sources. In our proposed system, the cochannel sepa-
ration module is responsible for this task. Rather than using the
masking-based methods, we utilize a GRN to learn a mapping
from the enhanced spectral magnitudes of cochannel speech to
the spectral magnitudes of target speech and interfering speech.
Different from previous works [3] on cochannel separation, the
GRN predicts both the target and the interference in the out-
put layer, following a configuration analogous to [4] (see al-
so Fig. 2(b)). During training, we jointly minimize the mean
squared error (MSE) between the dual outputs of the GRN and
the corresponding references:

L =
1

N

N∑

n=1

(∥Ŝt
n − St

n∥2
2 + ∥Ŝi

n − Si
n∥2

2) (5)

where Ŝt
n, Ŝi

n, St
n and Si

n denote the n-th estimated magnitude
spectra of the target and the interference, and the n-th reference
magnitude spectra of the target and the interference, respective-
ly. N represents the number of the training samples. The soft-
plus activation function [12] is applied to the output layer to fit
the value range of spectral magnitudes.

2.5. Joint training

When the two modules are well trained separately, we con-
catenate them into an integrated network for joint optimization.
Specifically, the output of the denoising module, i.e. the es-
timated ratio mask, is applied to the spectral magnitudes of a
noisy mixture. The enhanced spectral magnitudes are subse-
quently fed into the cochannel separation module. A batch nor-
malization [13] layer without learnable affine parameters is in-
serted between the modules. Fig. 3 shows the diagram of the
integrated two-stage separation system.
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Figure 3: Diagram of the two-stage system for noisy cochannel
speech separation.

2.6. One-stage baselines

We build two one-stage baseline systems for comparison, which
learn mapping-based and masking-based targets [10], respec-
tively. The mapping-based system directly predicts the spectral
magnitudes of target speech and interfering speech, while the
masking-based system predicts the IRMs instead:

IRM t(m, f) =

√
S1(m, f)2

S1(m, f)2 + N1(m, f)2
(6)

IRM i(m, f) =

√
S2(m, f)2

S2(m, f)2 + N2(m, f)2
(7)

where IRM t and IRM i represent the IRMs accounting for
target speech and interfering speech, respectively. S1(m, f)2

and S2(m, f)2 denote the energy of target speech, s1(t), and
interfering speech, s2(t), within a T-F unit at time frame m and
frequency channel f , respectively. N1(m, f)2 and N2(m, f)2

denote the energy of n1(t) = s2(t) + n(t) and n2(t) =
s1(t) + n(t) within a T-F unit at time frame m and frequency
channel f , respectively. Note that n(t) represents background
noise. As in the cochannel separation module, both baselines
are constructed with a single GRN which has dual outputs cor-
responding to target speech and interfering speech, respectively.

3. Experiments
3.1. Experimental setup

In our experiments, the proposed two-stage system and the one-
stage baselines are evaluated on WSJ0 SI-84 dataset [14] in-
cluding 7138 utterances from 83 speakers. Among these speak-
ers, 6 speakers (3 males and 3 females) are regarded as un-
trained speakers. Hence, 6385 utterances from the rest of the
speakers, including 39 male speakers and 38 female speakers,
are utilized to create the training mixtures. To derive noise-
independent models, we use 10,000 noises from a sound effect
library (available at http://www.sound-ideas.com) for the train-
ing set and two challenging noises (babble and factory) from
the NOISEX-92 dataset [15] for the test sets.

We create 160,000 noisy mixtures for training. To create a
training mixture, we mix a randomly chosen training utterance
from a male speaker, a randomly chosen training utterance from
a female speaker, and a random cut from the 10,000 training
noises at a SNR level randomly selected from {-5, -4, -3, -2, -1,
0} dB. The two speakers are randomly drawn as well. Note that
we refer to the SNR as the speech-to-noise ratio here.

For test, we use two SNR levels, i.e. -5 dB and -2 dB. To
create a test mixture, we mix a pair of randomly selected utter-
ances from a male speaker and a female speaker with a random
cut from the test noise. The speakers are randomly drawn from
6 test speakers (3 males and 3 females). Specifically, we create
two test sets for each noise at each SNR level:

• Test Set 1: we create 200 mixtures from utterances of 6
trained speakers (3 males and 3 females).

• Test Set 2: we create 200 mixtures from utterances of 6 un-
trained speakers (3 males and 3 females).

Note that the lengths of a target utterance and an interfering
utterance may differ from each other. In this study, we render
the length of their mixture equal to the length of the target ut-
terance. In other words, we truncate the interfering utterance
if it is longer than the target utterance; otherwise, we pad the
interfering utterance by repeating it.
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Table 1: STOI and PESQ scores on trained speakers.

metrics STOI (in %) PESQ
noises

Avg.
babble factory

Avg.
babble factory

SNR -5 dB -2 dB -5 dB -2 dB -5 dB -2 dB -5 dB -2 dB
speaker s1 s2 s1 s2 s1 s2 s1 s2 s1 s2 s1 s2 s1 s2 s1 s2

unprocessed 51.3 51.1 47.3 55.9 52.0 50.5 46.7 56.0 50.9 1.45 1.63 1.35 1.66 1.34 1.48 1.26 1.55 1.31
masking 69.4 67.0 65.1 73.7 71.6 68.4 63.7 75.2 70.7 1.84 1.79 1.60 2.00 1.87 1.85 1.65 2.08 1.91
mapping 69.8 67.0 64.6 74.5 71.1 69.4 64.9 76.2 70.9 1.91 1.83 1.65 2.06 1.92 1.94 1.78 2.14 1.99
two-stage 72.4 69.7 68.2 76.7 74.2 71.6 67.2 78.3 73.6 2.01 1.90 1.79 2.13 2.05 2.01 1.88 2.23 2.10

Table 2: STOI and PESQ scores on untrained speakers.

metrics STOI (in %) PESQ
noises

Avg.
babble factory

Avg.
babble factory

SNR -5 dB -2 dB -5 dB -2 dB -5 dB -2 dB -5 dB -2 dB
speaker s1 s2 s1 s2 s1 s2 s1 s2 s1 s2 s1 s2 s1 s2 s1 s2

unprocessed 51.9 50.9 48.6 55.9 52.5 50.5 47.6 56.4 52.6 1.41 1.49 1.39 1.58 1.35 1.43 1.22 1.50 1.28
masking 68.1 64.3 63.0 72.4 69.4 67.1 62.9 75.0 70.8 1.73 1.63 1.51 1.87 1.75 1.72 1.58 1.96 1.84
mapping 69.3 64.2 63.5 73.2 70.5 68.3 65.7 76.2 72.9 1.83 1.70 1.56 1.95 1.84 1.84 1.75 2.06 1.99
two-stage 71.8 67.0 66.9 75.4 73.3 70.8 67.8 78.3 75.1 1.93 1.75 1.73 2.01 1.98 1.89 1.85 2.13 2.08

In our experiments, all signals are sampled at 16 kHz. A
20-ms Hamming window is employed to segment a signal in-
to a set of time frames. Adjacent time frames are overlapped
by 50%. The feature representation and the IRMs are based on
161-dimensional short-time Fourier transform (STFT) magni-
tude spectra, calculated from a 320-point STFT. During train-
ing, we use Adam [16] as the optimizer. The learning rate is
set to 0.001. The models are trained with the MSE objective
function and a mini-batch size of 16. Within a mini-batch, al-
l samples are padded with zeros to have the same number of
time frames as the longest sample does. For all models, the
network inputs are normalized to zero mean and unit variance.
During inference, the enhanced STFT magnitude spectra and
noisy mixture phases are passed into a resynthesizer to derive
time-domain waveforms of target speech and interfering speech.
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Figure 4: Comparison of noisy cochannel speech separation
systems in terms of STOI improvements for target speech on the
untrained babble noise. The STOI improvements are calculated
as ∆STOI(%) = 100 × (STOIprocessed − STOIunprocessed).

3.2. Experimental results

In this study, we use two objective metrics, i.e. short-time ob-
jective intelligibility (STOI) [17] and perceptual evaluation of
speech quality (PESQ) [18], to evaluate objective speech intel-
ligibility and quality, respectively.

The STOI and PESQ scores on trained speakers and un-
trained speakers are presented in Table 1 and Table 2, re-
spectively. The best results in each case are highlighted by
boldface numbers. In both tables, we use “masking” to indi-
cate the masking-based baseline and “mapping” to indicate the

mapping-based baseline. Additionally, target speech (male) and
interfering speech (female) are denoted as s1 and s2, respective-
ly.

Generally, regardless of the system of choice, the GRN
proposed by [9] provides substantial improvements in terms of
both STOI and PESQ scores over the unprocessed mixtures in
a noise-independent scenario. As shown in Table 1 and Ta-
ble 2, the STOI scores achieved by the two baselines are close
on trained speakers, while the mapping-based baseline yields
more than 1% STOI improvements on untrained speakers com-
pared to the masking-based baseline. This indicates that the
mapping-based baseline generalizes better to untrained speaker-
s than the masking-based baseline. With the proposed two-stage
framework, the STOI scores further improve by more than 2.5%
on both trained speakers and untrained speakers. With regard
to speech quality, a 0.1 PESQ improvement over the mapping-
based baseline is achieved by the two-stage system.

The STOI improvements for target speech on the babble
noise are shown in Fig. 4. Overall, the proposed two-stage
system consistently outperforms the two one-stage baselines in
terms of STOI improvements. In the most challenging case,
where cochannel speech from untrained speakers is mixed with
the babble noise at -5 dB, the one-stage baselines leads to an
around 13.3% STOI improvement over the unprocessed mix-
tures. The proposed two-stage system, however, yields a 16.1%
STOI improvement, which is substantially better than the one-
stage baselines.

4. Conclusions
In this study, we have proposed a two-stage system to deal with
noisy cochannel speech separation. In the proposed system, we
use two successive modules to perform denoising and cochan-
nel separation separately, and subsequently integrate them for
joint optimization. A newly-introduced network for speech sep-
aration, named GRN, is employed to construct the modules.
Our experimental results indicate that the proposed system con-
sistently outperforms the one-stage baselines for both trained
speakers and untrained speakers. In future research, we will
extend the present work to the gender-independent scenario.
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