
• Training targets

• Target complex spectrum (TCS) is used as the training target in this study, which can reconstruct clean speech.

• In addition, we extend signal approximation (SA) (Huang et al., 2014), which performs masking by minimizing the 

difference between the spectral magnitude of clean speech and that of estimated speech. The loss for cRM-based 

signal approximation (cRM-SA) is defined as 𝑆𝐴 = 𝑐𝑅𝑀 × 𝑌 − 𝑆 2, where 𝑌 and 𝑆 denote the spectrograms of 

noisy speech and clean speech, respectively.

• CRN-based complex spectral mapping

• We have recently developed a CRN for spectral mapping, which benefits from the feature extraction capability of 

CNNs and the temporal modeling capability of recurrent neural networks (RNNs) (Tan and Wang, 2018).

• The CRN is essentially an encoder-decoder architecture, as shown in Fig. 1. Specifically, the encoder comprises five 

convolutional layers, and the decoder five deconvolutional layers. Between the encoder and the decoder, two long 

short-term memory (LSTM) layers are used to model the temporal dependencies. Additionally, skip connections are 

utilized to concatenate the output of each encoder layer to the input of the corresponding decoder layer.

• In this study, we extend this architecture to perform complex 

spectral mapping, as illustrated in Fig. 2. The encoder and the 

LSTM layers are shared across the estimates of real and imaginary 

components, while two distinct decoder modules are employed to 

estimate real and imaginary spectrograms, respectively.

• The design of such an architecture is inspired by multi-task 

learning, in which multiple related prediction tasks are jointly 

learned with information shared across the tasks. For complex 

spectral mapping, the estimation of the real component and that 

of the imaginary component can be considered as two related 

subtasks.

• Phase enhancement for speech enhancement

• Typical speech enhancement systems enhance only the magnitude spectrogram and use the noisy phase spectrogram 

to reconstruct the time-domain waveform.

• A recent study (Paliwal et al., 2011) shows that considerable improvements in both objective and subjective speech 

quality can be achieved by accurate phase spectrum estimation.

• Various phase enhancement algorithms for speech separation have been developed, whereas they do not address the 

magnitude spectrum. 

• Complex spectral mapping

• It was found that both real and imaginary components of the clean speech spectrogram show clear spectrotemporal

structure and are thus amenable to supervised learning (Williamson et al., 2016).

• Based on this observation, complex ratio masking (cRM) was developed, which yields better objective intelligibility 

than ideal ratio mask (IRM) estimation.

• In a more recent study (Fu et al., 2017), a CNN was employed to estimate the clean real and imaginary spectra from 

the noisy ones, as known as complex spectral mapping.

• Convolutional recurrent network

• Motivated by our recent work (Tan and Wang, 2018) on CRNs, we propose a new CRN architecture to perform 

complex spectral mapping for speech enhancement. This CRN architecture additionally incorporate a newly-

developed grouping strategy to reduce the number of trainable parameters and the computational cost.

• The proposed CRN substantially outperforms an existing CNN for complex spectral mapping in terms of STOI and 

PESQ. Moreover, we find that complex spectral mapping consistently outperforms magnitude spectral mapping, 

complex ratio masking, and complex ratio masking based signal approximation.
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1. Introduction

3. Experimental results & comparisons
• Corpus 

• WSJ0 SI-84 training set including 7138 utterances from 83 speakers. Among these speakers, 6 speakers (3 males and 3 

females) are treated as untrained speakers. Hence, we train the models with the 77 remaining speakers.

• 10,000 training noises from a sound effect library. Two testing noises (babble and cafeteria) from an Auditec CD.

• We create a training set including 320,000 mixtures with a total duration of about 500 hours, as well as a testing set for 

each noise using 6 untrained speakers.

• Evaluation metrics: short-time objective intelligibility (STOI) and perceptual evaluation of speech quality (PESQ)

• Comparisons of approaches

Summary
Phase is important for perceptual quality in speech enhancement. However, it seems intractable to directly estimate phase

spectrogram through supervised learning due to lack of spectrotemporal structure in phase spectrogram. Complex spectral

mapping aims to estimate the real and imaginary spectrograms of clean speech from those of noisy speech, which

simultaneously enhances magnitude and phase responses of noisy speech. In this paper, we propose a new convolutional

recurrent network (CRN) for complex spectral mapping, which leads to a causal system for noise- and speaker-independent

speech enhancement. In terms of STOI and PESQ, the proposed CRN significantly outperforms an existing convolutional

neural network (CNN) for complex spectral mapping, as well as a strong CRN for magnitude spectral mapping.

2. Method

Figure 1. Illustration of the CRN for magnitude 

spectral mapping (Tan and Wang, 2018).

Table 1. Comparisons of different models 

and training targets in STOI and PESQ 

metrics on untrained noises and untrained 

speakers. Note that 𝑲 denotes the group 

number in LSTM layers.

• Model complexity reduction via a grouping strategy

• We adopt a newly-developed grouping strategy to improve the efficiency of recurrent layers while maintaining their

performance (Gao et al., 2018). This grouping strategy is illustrated in Fig. 3.

• In a recurrent layer, both input features and hidden states are split into disjoint groups, and intra-group features are

learned separately within each group. Thus the model complexity is substantially reduced by the grouping operation.

• The inter-group dependency, however, cannot be captured. In other words, an output only depends on the input in the

corresponding feature group, which significantly degrades the representation power.

• To mitigate this problem, a parameter-free representation rearrangement layer between two consecutive recurrent

layers is used to rearrange the features and hidden states, so that the inter-group correlations are recovered.

Figure 2. Network architecture of our proposed CRN for complex spectral mapping.

Figure 3. Illustration of the grouping strategy for RNNs.

Table 2. Evaluation of phase estimation 

provided by complex spectral mapping.

4. Conclusion
• As shown in Table 1, our proposed CRN model significantly outperforms an existing CNN for complex spectral mapping. 

Additionally, complex spectral mapping consistently outperforms  magnitude spectral mapping, as well as complex ratio 

masking and complex ratio masking based signal approximation.

• Moreover, our complex spectral mapping provides an effective phase estimate, as shown in Table 2. Thus it avoids the use 

of the noisy phase.
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