Compressing Deep Neural Networks for
Efficient Speech Enhancement

Ke Tan and DelLiang Wang
The Ohio State University, United States

OUTLINE

1. Background and Motivations

2. Algorithm Description

3. Experiments

4. Conclusion

OUTLINE

1. Background and Motivations

2. Algorithm Description

3. Experiments

4. Conclusion

Background k Model Compression for Speech Enhancement

e Increasing interest in deploying deep learning based enhancement systems for
real-world applications and products.

e To achieve strong enhancement performance would require a large deep neural
network (DNN).

< computation and memory consuming

< 1t is difficult to deploy such DNNs in latency-sensitive applications or on
resource-limited devices

e [t becomes an increasingly important problem to reduce memory and
computation in DNNSs for speech enhancement.

Motivations k Model Compression for Speech Enhancement

e Two ways to derive a lightweight DNN:
< to directly design a DNN with a small number of trainable parameters
< to train a reasonably large DNN and then compress it

e Previous studies show that starting with training a large, over-parameterized
DNN seems important for achieving high performance.

e [t remains unclear for speech enhancement whether specific compression
techniques are effective and how different techniques can be combined to
achieve high compression rates.

e A generic compression pipeline for different speech enhancement models would
be desired.

Motivations k Model Compression for Speech Enhancement

e In this study, we developed two model compression pipelines for DNN-based
speech enhancement.

e Each pipeline consists of three techniques: sparse regularization, iterative
pruning and clustering-based quantization.

e Evaluation results show that the proposed approach substantially reduces the
sizes of four different speech enhancement models, without significant
performance degradation.

OUTLINE

1. Background and Motivations

2. Algorithm Description

3. Experiments

4. Conclusion

e Atypical procedure of network pruning comprises three stages:
< training a large DNN that achieves satisfactory performance
< removing a specific set of weights in the trained DNN with a certain
criterion
< fine-tuning the pruned DNN

e The granularity of tensor sparsity impacts the efficiency of hardware
architecture.
< Fine-grained sparsity: individual weights are Set t0 Zero g, unstructured
a difficult to apply hardware acceleration pruning
< Coarse-grained sparsity: groups of weights are set to zero - structured
a more hardware-friendly pruning

e The key issue in network pruning is to define the pruning criterion, which
determines the set of weights to be removed.

e For unstructured pruning, the importance of a specific set U of weights as the
Increase in the error induced by removing them: (V — validation set, © - set of
all trainable parameters in the DNN)

Jy =L(V,8|lw=0,vw € U) — L(V,0).

e For structured pruning, the importance of a specific set U of weight groups as
the increase in the error induced by removing them:
Juy=L(WV,0|g=0,vgeU) — L(V,0).

Algorithm 1 Per-tensor sensitivity analysis for unstructured
pruning

Algorithm 2 Per-tensor sensitivity analysis for structured
pruning

Input: (1) Validation set V; (2) set VW, of all nonzero weights
in the [-th weight tensor Wy, Vi; (3) loss function £(V,0),
where © 1s the set of all nonzero trainable parameters in the
DNN; (4) predefined tolerance value aj.

Output: Pruning ratio [3; for weight tensor W, Vi.

I: for each tensor W; do

2: for 3 in {0%,5%,10%, ...,90%, 95%,100%} do

3 Let 4 € W, be the set of the 3(%) of nonzero

weights with the smallest absolute values in tensor Wy

4 Ty < L(V,Blw =0Yw eld) — L(V,0);
5 if 7;, > a4 then

6: B+ B —5%:

7: break

8 end if

9 end for

10: if 3; is not assigned any value then

11: B+ 100%:

12: end if

13: end for

14: return [3; for weight tensor Wy, Vi

Input: (1) Validation set V: (2) set G; of all nonzero weight
groups in the [-th weight tensor W, Vi; (3) loss function
L(V,0), where O is the set of all nonzero trainable parameters
in the DNN: (4) predefined tolerance value ayj.

Output: Pruning ratio 3; for weight tensor Wy, VL.

I: for each tensor W, do

2 for 5 in {0%, 5%, 10%, . ..,90%, 95%,100%} do

3 Let U4 C G; be the set of the 3(%) of nonzero

weight groups with the smallest /; norms in tensor Wy;

4 Tu <+ L(V,O|g=0,YVgeld)— L(V,O):
5 if Z;; > o then

6: jg — j — 5(/_{

7: break

8 end if

9 end for

10: if 3; is not assigned any value then

11 81+ 100%:

12: end if

13: end for

14: return [3; for weight tensor Wy, VI

Algorithm k Sparse Regularization

e [or unstructured pruning, we use ¢, regularization to impose weight-level
sparsity, which encourages less important weights to become zero, reducing the
resulting performance degradation'

Rey = n(W) Z wl

wew
where W denotes the set of all weights. The function n(-) calculates the number of

elements in a set.

e [or structured pruning, we use a group sparse regularizer [2]:

Rso, = (W)Z|W|+ G 2 e I8l

where G denotes the set of all weight groups. The number of weights in each
weight group g Is represented by p,.

[1] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. A sparse-group lasso. Journal of Computational and
Graphical Statistics, 22(2):231-245, 2013.

Algorithm k

Clustering-based Quantization

e To further compress the pruned DNN, we propose to use clustering-based

guantization.

e Specifically, the weights in each tensor are partitioned into K clusters through k-

means clustering.

e Once the clustering algorithm converges, we reset all the weights that fall into

the same cluster to the value of the corresponding centroid.

1.09

-1.74

-0.34

-0.01

-0.81

1.17

-0.65

-1.41

0.24

1.58

1.00

1.33

1.25

0.43

1.73

-1.54

Original Weight Matrix

K-Means
Clustering

—>

Index Value

0

-1.663

1

-0.600

2

0.220

3

1.307

Codebook

Quantization

—>

3

0

1

2

1

3

1

0

2

3

3

3

3

2

3

0

Quantized Weight Matrix

Algorithm k Model Compression for Speech Enhancement

Uncompressed| | Training with Sparse | .
DNN Regularization Unstructured Pruning
Y
Compressed | Clustering-based | Fine-tuning with
DNN Quantization Sparse Regularization
(a)
Uncompressed| | Training with Sparse| .
DNN Regularization Structured Pruning
Y
Compressed | Clustering-based | Fine-tuning with
DNN Quantization Sparse Regularization
(b)

Fig. 1. lllustration of the proposed compression pipelines.

OUTLINE

1. Background and Motivations

2. Algorithm Description

3. Experiments

4. Conclusion

4

e Speech corpus: training set of WSJO0, including 12776 utterances from 101 (= 89
+ 6 + 6) speakers.

e (1) Training noises: 10,000 noises from a sound effect library. (2) Test noises:
babble (BAB) and cafeteria (CAF) noises from an Auditec CD.

e Training set: 320,000 mixtures, SNR between -5 and 0 dB.

e \alidation set: 846 mixtures, SNR between -5 and 0 dB.

e Test sets: 846 mixtures for each of the two noises and each of three SNRs (-5, 0,
5dB).

k Speech Enhancement Models

e \We use four models with different designs including DNN types, training
targets and processing domains.

e (1) Feedforward DNN (FDNN): 3 hidden layers with 2048 units in each layer.
Input: magnitude spectrogram. Target: IRM.

e (2) LSTM: 4 LSTM hidden layers with 1024 units in each layer, and the output
layer is a fully-connected layer followed by ReL.U function. The LSTM
performs spectral mapping in the magnitude domain.

e (3) Temporal convolutional neural network (TCNN) [2]: time-domalin
enhancement.

e (4) Gated convolutional recurrent network (GCRN) [3]: complex spectral

mapping.

[2] A. Pandey and D. L. Wang. TCNN: Temporal convolutional neural network for real-time speech enhancement in
the time domain. In IEEE ICASSP, pages 6875-6879. IEEE, 2019.

[3] K. Tan and D. L. Wang. Learning complex spectral mapping with gated convolutional recurrent networks for
monaural speech enhancement. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28:380-390,

2020.

k Evaluation of Compression Pipelines

Table 1. Comparisons between pruned models and comparably-

sized unpruned models.

Metric STOI (%) PESQ

SNR 5dB 0dB__ 5dB | -5dB _0dB__ 5dB
Mixture | 57.86 70.14 8148 | 151 180 2.12 -
FDNNp | 63.72 7763 8639 | 1.63 206 244 | 1.I5M
FDNN3g 62.89 76.25 85.54 1.58 1.98 2.35 1.45M
LSTMp 7576 86.62 9225 1.98 2.46 2.85 293 M
LSTMg | 7225 8398 9031 | 185 231 268 | 3.14M

Param.

Table 2. Comparisons between uncompressed and compressed mod-

els.
Metric STOI (%) PES
SNR Sd8 0d8 5d8 [3d8 0 dg o CR
Mixture 5786 7014 8148 | 151 180 2.12 - -
FDNNy 03T TR6d 8725 | 165 200 247 | H5AMB | IX
FDNN(63.58 7751 8650 | 164 206 244 | 010MB | 343x
LSTM, 7574 8647 9204 | 200 247 284 | I32TMB | Ix
LSTMc 7583 8662 9225 | 198 246 284 | 249MB | 46x
TCNNy 7976 8972 9396 | 2.04 252 286 | 928MB | 1Ix
TCNNc 7777 8846 9326 | 195 244 279 | 056MB | 34x
GCRN, ST.05 9043 0443 | 204 265 301 | 37.27MB | IxX
GCRNc || 8066 9015 9426 | 215 265 302 | LIIMB | 34x
GCRNG-SPJ| 8105 9032 9435 | 215 266 303 | 4.11MB 0

Experiments k Effects of Sparse Regularization and Iterative Pruning

FDNN LSTM TCNN =+GCRN FDNN LSTM TCNN =+=GCRN
100% 100%
80% 80%
X S
w 60% o 60%
£ g
g 40% g 40%
o o
20% 20%
0% 0%
0 1 2 3 4 5 0 1 2 3 4 5
Iteration Iteration
(a) (b)

Fig. 2. The percent of the original number of trainable parameters at different
pruning iterations. (a).Without, and (b).With sparse regularization. Note that
unstructured pruning is performed.

Erinms N

Effects of Sparse Regularization and Iterative Pruning

FDNN LSTM TCNN =+«GCRN

0 1 2 3
Iteration

(a)

FDNN LSTM TCNN

0 1 2 3
Iteration

(c)

FDNN LSTM TCNN ——GCRN

.

0 1 2 3
Iteration

(b)

FDNN LSTM TCNN ==—GCRN

0 1 2 3
Iteration

(d)

4

Fig. 3. STOI and PESQ scores for -5 dB SNR at different pruning iterations. (a)&(c).
Without, and (b)&(d). With sparse regularization. Note that unstructured pruning is

performed.

Babble, -5 dB Cafeteria, -5 dB
Unprocessed: Unprocessed:
GCRNy (37.27 MB): TCNN, (19.28 MB):
GCRN¢ (1.11 MB): TCNN((0.94 MB):

Clean: Clean:

OUTLINE

1. Background and Motivations

2. Algorithm Description

3. Experiments

4. Conclusion

1

e In this study, we have proposed two new pipelines to compress DNNs for
speech enhancement.

e Our experimental results show that the proposed pipelines substantially reduce
the sizes of all the four models, without significant performance degradation.

e \We also find that training and pruning an over-parameterized DNN achieves
better enhancement results than directly training a small DNN that has a
comparable size to the pruned DNN.

