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⚫ Increasing interest in deploying deep learning based enhancement systems for 

real-world applications and products. 

⚫ To achieve strong enhancement performance would require a large deep neural 

network (DNN).

❖ computation and memory consuming

❖ it is difficult to deploy such DNNs in latency-sensitive applications or on 

resource-limited devices

⚫ It becomes an increasingly important problem to reduce memory and 

computation in DNNs for speech enhancement.

Background Model Compression for Speech Enhancement
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⚫ Two ways to derive a lightweight DNN:

❖ to directly design a DNN with a small number of trainable parameters

❖ to train a reasonably large DNN and then compress it

⚫ Previous studies show that starting with training a large, over-parameterized 

DNN seems important for achieving high performance. 

⚫ It remains unclear for speech enhancement whether specific compression 

techniques are effective and how different techniques can be combined to 

achieve high compression rates.

⚫ A generic compression pipeline for different speech enhancement models would 

be desired.

Motivations Model Compression for Speech Enhancement
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⚫ In this study, we developed two model compression pipelines for DNN-based 

speech enhancement.

⚫ Each pipeline consists of three techniques: sparse regularization, iterative 

pruning and clustering-based quantization.

⚫ Evaluation results show that the proposed approach substantially reduces the 

sizes of four different speech enhancement models, without significant 

performance degradation. 

Motivations Model Compression for Speech Enhancement
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⚫ A typical procedure of network pruning comprises three stages:

❖ training a large DNN that achieves satisfactory performance

❖ removing a specific set of weights in the trained DNN with a certain 

criterion

❖ fine-tuning the pruned DNN

⚫ The granularity of tensor sparsity impacts the efficiency of hardware 

architecture.

❖ Fine-grained sparsity: individual weights are set to zero

❑ difficult to apply hardware acceleration

❖ Coarse-grained sparsity: groups of weights are set to zero

❑ more hardware-friendly 

Algorithm Iterative Pruning

unstructured 

pruning

structured 

pruning
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⚫ The key issue in network pruning is to define the pruning criterion, which 

determines the set of weights to be removed.

⚫ For unstructured pruning, the importance of a specific set 𝒰 of weights as the 

increase in the error induced by removing them: (𝒱 – validation set, Θ - set of 

all trainable parameters in the DNN)

ℐ𝒰 = ℒ 𝒱, Θ|𝑤 = 0, ∀𝑤 ∈ 𝒰 − ℒ 𝒱, Θ .

⚫ For structured pruning, the importance of a specific set 𝒰 of weight groups as 

the increase in the error induced by removing them:

ℐ𝒰 = ℒ 𝒱, Θ|𝐠 = 𝟎, ∀𝐠 ∈ 𝒰 − ℒ 𝒱, Θ .

Algorithm Iterative Pruning
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Algorithm Iterative Pruning
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⚫ For unstructured pruning, we use ℓ1 regularization to impose weight-level 

sparsity, which encourages less important weights to become zero, reducing the 

resulting performance degradation:

ℛℓ1 =
𝜆1

𝑛(𝒲)


𝑤∈𝒲

𝑤

where 𝒲 denotes the set of all weights. The function 𝑛(∙) calculates the number of 

elements in a set. 

⚫ For structured pruning, we use a group sparse regularizer [2]:

ℛSGL =
𝜆1

𝑛(𝒲)


𝑤∈𝒲

𝑤 +
𝜆2
𝑛(𝒢)



𝐠∈𝒢

𝑝𝐠 𝐠 2

where 𝒢 denotes the set of all weight groups. The number of weights in each 

weight group 𝐠 is represented by 𝑝𝐠.

[1] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani. A sparse-group lasso. Journal of Computational and 

Graphical Statistics, 22(2):231–245, 2013.

Algorithm Sparse Regularization
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⚫ To further compress the pruned DNN, we propose to use clustering-based 

quantization.

⚫ Specifically, the weights in each tensor are partitioned into 𝐾 clusters through k-

means clustering. 

⚫ Once the clustering algorithm converges, we reset all the weights that fall into 

the same cluster to the value of the corresponding centroid. 

Algorithm Clustering-based Quantization
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Algorithm Model Compression for Speech Enhancement

(a)

(b)

Fig. 1. Illustration of the proposed compression pipelines.
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⚫ Speech corpus: training set of WSJ0, including 12776 utterances from 101 (= 89 

+ 6 + 6) speakers.

⚫ (1) Training noises: 10,000 noises from a sound effect library. (2) Test noises: 

babble (BAB) and cafeteria (CAF) noises from an Auditec CD.

⚫ Training set: 320,000 mixtures, SNR between -5 and 0 dB.

⚫ Validation set: 846 mixtures, SNR between -5 and 0 dB.

⚫ Test sets: 846 mixtures for each of the two noises and each of three SNRs (-5, 0, 

5 dB).

Experiments Data Preparation
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⚫ We use four models with different designs including DNN types, training 

targets and processing domains.

⚫ (1) Feedforward DNN (FDNN): 3 hidden layers with 2048 units in each layer. 

Input: magnitude spectrogram. Target: IRM.

⚫ (2) LSTM: 4 LSTM hidden layers with 1024 units in each layer, and the output 

layer is a fully-connected layer followed by ReLU function. The LSTM 

performs spectral mapping in the magnitude domain.

⚫ (3) Temporal convolutional neural network (TCNN) [2]: time-domain 

enhancement.

⚫ (4) Gated convolutional recurrent network (GCRN) [3]: complex spectral 

mapping.

[2] A. Pandey and D. L. Wang. TCNN: Temporal convolutional neural network for real-time speech enhancement in 

the time domain. In IEEE ICASSP, pages 6875–6879. IEEE, 2019.

[3] K. Tan and D. L. Wang. Learning complex spectral mapping with gated convolutional recurrent networks for 

monaural speech enhancement. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28:380–390, 

2020.

Experiments Speech Enhancement Models
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Experiments Evaluation of Compression Pipelines
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Experiments Effects of Sparse Regularization and Iterative Pruning

Fig. 2. The percent of the original number of trainable parameters at different 

pruning iterations. (a).Without, and (b).With sparse regularization. Note that 

unstructured pruning is performed.
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Experiments Effects of Sparse Regularization and Iterative Pruning

Fig. 3. STOI and PESQ scores for -5 dB SNR at different pruning iterations. (a)&(c). 

Without, and (b)&(d). With sparse regularization. Note that unstructured pruning is 

performed.
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Experiments Demos

Unprocessed:

Babble, -5 dB

GCRNU (37.27 MB): 

GCRNC (1.11 MB): 

Clean:

Cafeteria, -5 dB

Unprocessed:

TCNNU (19.28 MB): 

TCNNC (0.94 MB): 

Clean:
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⚫ In this study, we have proposed two new pipelines to compress DNNs for 

speech enhancement. 

⚫ Our experimental results show that the proposed pipelines substantially reduce 

the sizes of all the four models, without significant performance degradation. 

⚫ We also find that training and pruning an over-parameterized DNN achieves 

better enhancement results than directly training a small DNN that has a 

comparable size to the pruned DNN. 

Conclusion


