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Background k Dual-Microphone Mobile Phones

e [n mobile communication, speech quality and intelligibility can be severely
degraded by background noise, when the far-end talker is in a noisy

environment.

e Speech enhancement algorithms have been integrated into most mobile phones.
In a typical dual-microphone configuration, a primary microphone is placed on
the bottom of a mobile phone and a secondary microphone on the top.
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Fig. 1: Hlustration of a dual-microphone
mobile phone.
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Background k Real-time Speech Enhancement

e Real-time speech enhancement is needed for mobile communication.

e Several requirements on model design:
< the model should use no or few future time frames;

< the model should not have a high computational cost for the sake of
processing latency;

< memory consumption should fit the capacity of mobile phones.




Cwowaions N

e Inspired by recent advances in complex-domain speech enhancement [1, 2, 3],
we develop a new densely-connected convolutional recurrent network (DC-
CRN) to perform dual-channel complex spectral mapping.

e [n addition, we propose a structured pruning technique to compress the DC-
CRN, which substantially reduces the model size without significantly
degrading the enhancement performance.

[1] D. S. Williamson, Y. Wang, and D. L. Wang, “Complex ratio masking for monaural speech separation,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 24, no. 3, pp. 483-492, 2016.

[2] S.-W. Fu, T.-y. Hu, Y. Tsao, and X. Lu, “Complex spectrogram enhancement by convolutional neural network with
multi-metrics learning,” in IEEE 27th International Workshop on Machine Learning for Signal Processing. IEEE,
2017, pp. 1-6.

[3] K. Tan and D. L. Wang, “Learning complex spectral mapping with gated convolutional recurrent networks for
monaural speech enhancement,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp.

380-390, 2020.
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Model Description k Densely-connected CRN

A

44 Conv-DC-Block }—> Concat
!
| Conv-DC-Block | | Deconv-DC-Block |
44 Conv-DC-Block }—> Concat
l ~ Conv, BN, ELU
| Conv-DC-Block | | Deconv-DC-Block |
l C BN, ELU
44 Conv-DC-Block }—v Concat ‘ om =5
l | Conv/Deconv ‘ ‘ Conv/Deconv ‘
| Conv-DC-Block | | Deconv-DC-Block | Conv, BN, ELU
l r Sigmoid
4>| Conv-DC-Block }—' Concat
l ~ Conv, BN, ELU
| Conv-DC-Block | | Deconv-DC-Block |
44 Conv-DC-Block }—’ Concat ‘ Gated Conv/Deconv ‘
| Conv-DC-Block | | Deconv- Dc Block | (a) Densely-Connected Block (b) Gated Convolution/Deconvolution
Split & Reshape

Concat i Fig. 3. Diagrams of the densely-connected block
ﬁ"‘"‘" “tner | (a) and the gated convolution/deconvolution (b).

T LI

Fig. 2. Diagram of the DC-CRN.




Model Description k Training Objective

e \We train the DC-CRN to perform dual-channel complex spectral mapping with
a loss function as follows:
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Model Description k Network Configurations

e Noncausal DC-CRN:
< a reasonably large number of trainable parameters (~8M)
< using bidirectional LSTM for sequential modeling

e Causal DC-CRN:
< a relatively small number of trainable parameters (~290K)
< using unidirectional LSTM for sequential modeling

e The causal DC-CRN is still not amenable to the capacity of most mobile phones.




Model Description k Iterative Structured Pruning

e \We propose a structured pruning technique to compress the causal DC-CRN,
without significantly sacrificing the enhancement performance.

e Structured pruning is a class of coarse-grained parameter pruning techniques,
and it leads to more regular sparsity patterns than unstructured pruning. For
example, structured pruning can remove an entire column of a weight matrix,
unlike unstructured pruning that prunes individual weights.

e The regularity of sparse structure makes it easier to apply hardware acceleration.

e To achieve a high compression rate, we adopt a group sparse regularization [4]
technique to impose the group-level sparsity of the weight matrices or tensors.

[4] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini, “Group sparse regularization for deep neural
networks,” Neurocomputing, vol. 241, pp. 8§1-89, 2017.




Model Description k Iterative Structured Pruning

e To determine the pruning ratio for each layer, we perform a per-layer sensitivity
analysis.

e Subsequently, we perform group-level pruning as per layer-wise pruning ratios,
and then fine-tune the pruned model.

e This procedure is repeated until the number of pruned weights becomes trivial
In an iteration or a significant degradation of STOI or PESQ is observed on a
validation set.
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Experiments k Data Preparation

e Speech corpus: training set of WSJO0, including 12776 utterances from 101 (= 89
+ 6 + 6) speakers.

e e simulate a rectangular room with a size of 10X 72X 3 m3 using the image
method. The target source (mouth) is at the center of the room. The primary
microphone is placed on a sphere centered at the target source, with a radius
randomly sampled between 0.01 m and 0.15 m.

e The distance between microphones is fixed to 0.1 m. Thus the location of the
secondary microphone is randomly chosen on a sphere with a radius of 0.1 m,
centered at the primary microphone.

e The reverberation time (Tg() is randomly sampled between 0.2 sand 0.5 s.




Experiments k Data Preparation

e \We simulate a diffuse babble noise in the following way.
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randomly select 72 speech clips from 72 randomly chosen speakers, and
place them on a horizontal circle centered at and with the same height as

% concatenate the utterances spoken by each of the 630 speakers in the
TIMIT corpus, and then split them into 480 and 150 speakers for training

the primary microphone, where the azimuths range from 0 to 355 degrees

with a step of 5 degrees.
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The distance between the primary microphone

and each of the interfering sources is 2 m.




Experiments k Data Preparation

e In order to mimic the head shadow effect, we downscale the amplitude of the
speech signal at the secondary channel prior to mixing, where the downscaling
ratio is randomly sampled between -10 and 0 dB.

e For both training and validation data, the SNR is randomly sampled between -5
and 0 dB, where the SNR is with respect to the reverberant speech signal and
the reverberant noise signal at the primary channel. We create a test set
consisting of 846 mixtures for each of four SNRs, i.e. -5, 0, 5 and 10 dB.




Experiments

Table 1. Comparisons of alternative models in STOI and PESQ. Here v indicates causal model, and X indicates noncausal model.
Test SNR -5dB 0dB 5dB 10 dB # Param Causal
Metric STOI (%) PESQ STOI (%) PESQ STOI (%) PESQ STOI (%) PESQ ae e
Unprocessed 58.71 1.49 72.08 1.73 83.53 2.04 91.41 2.38 - -
NC-CRN-PSM 85.48 ] 2.20] 90.79 2.60 93.82 2.93 05.47 3.17 1299 M X
NC-DC-CRN-RI [ 92.77 3.07 96.09 3.41 97.66 3.63 98.45 3.78 8.36 M X
IRM 92.02 2.83 94.21 3.10 96.24 3.39 97.74 3.68 - -
PSM 94.08 3.16 96.26 3.40 97.87 3.66 08.87 3.88 - -
C-CRN-PSM 78.77 ] 1.76] 86.80 2.18 91.53 2.56 94.05 2.88 73.15K v
C-DC-CRN-RI 87.57 2.56 93.36 2.99 96.35 3.30 97.74 3.53 290.44 K v
C-DC-CRN-RI-P1 86.88 2.54 93.08 2.97 96.16 3.26 97.63 3.46 124.96 K v
C-DC-CRN-RI-P2 87.13 2.56 93.10 2.98 96.14 3.27 97.62 3.47 113.68 K v
C-DC-CRN-RI-P3 86.64 2.52 92.89 2.95 96.07 3.26 97.61 3.47 108.77 K v
C-DC-CRN-RI-P4 86.63 2.49 92.85 2.91 96.03 3.22 97.59 3.44 106.21 K v
C-DC-CRN-RI-P53 86.63 2.48 92.86 2.90 96.07 3.20 97.65 3.43 104.76 K v
C-DC-CRN-RI-P6 86.45 2.51 92.64 2.94 95.88 3.27 97.47 3.51 103.07 K v

[5] K. Tan, X. Zhang, and D. L. Wang, “Real-time speech enhancement using an efficient convolutional recurrent

network for dual-microphone mobile phones in close-talk scenarios,” in IEEE International Conference on Acoustics,
Speech and Signal Processing. IEEE, 2019, pp. 5751-5755.




Experiments k Results

Table 2. Effects of dense connectivity at -5 dB SNR.

Test SNR -5dB # Param
Metric STOI (%) PESQ  SNR (dB) '
Unprocessed 58.71 1.49 -5.03 -
C-DC-CRN-RI 87.57 2.56 8.61 290.44 K
— DCgyip (1) 87.23 2.53 8.49 25332 K
— DCgp (ii) 86.26 242 8.02 218.69 K
— DCSl\ip — DCgp (iii) 82.77 2.10 6.37 181.57 K

Table 3. Investigation of inter-channel features for magnitude- and
complex-domain approaches. “ICFs” represent the inter-channel

features.
Test SNR -5dB Domain
Metric STOI (%) PESQ  SNR (dB)
Unprocessed 58.71 1.49 -5.03 -
C-CRN-PSM w/ ICFs 78.77] 1.76 ] 5.13 ] Magnitude
C-CRN-PSM w/o ICFs 76.14 1.67 4.56 Magnitude
C-DC-CRN-RI w/ ICFs 87.64] 2.56 ] 8.44 ] Complex
C-DC-CRN-RI w/o ICFs 87.44 2.56 8.61 Complex




Noncausal: Causal:
Unprocessed (-5 dB): Unprocessed (-5 dB):
NC-CRN-PSM: C-CRN-PSM:
NC-DC-CRN-RI: C-DC-CRN-RI-P6:
IRM: IRM:

Clean: Clean:
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e In this study, we have proposed a novel framework for dual-channel speech
enhancement on mobile phones, which employs a new causal DC-CRN to
perform dual-channel complex spectral mapping.

e By applying an iterative structured pruning technique, we derive a low-latency
and memory-efficient enhancement system, which is amenable to real-time
processing on mobile phones.

e Evaluation results demonstrate that the proposed approach significantly
outperforms a previous method for dual-channel speech enhancement.




