Real-Time Speech Enhancement Using

An Efficient Convolutional Recurrent
Network for Dual-Microphone Mobile
Phones Iin Close-Talk Scenarios

Ke Tan!, Xueliang Zhang? and DeLiang Wang!
1The Ohio State University, USA
2Inner Mongolia University, China




_OUTLINE

1. Background and Motivations

2. Algorithm Description

3. Experiments

4. Conclusion



_OUTLINE

1. Background and Motivations

2. Algorithm Description

3. Experiments

4. Conclusion



Background k Dual-Microphone Mobile Phones

e Mobile speech communication has become an increasingly important
application for speech enhancement. In an adverse acoustic environment,
speech quality and intelligibility can be severely degraded by background noise.

e \We focus on speech enhancement for a typical dual-microphone configuration
In close-talk scenarios, where a speech signal is picked up with small distance
between the primary microphone and the human mouth.
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Figure 1: Illustration of a dual-
microphone mobile phone.
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Background k DNN-Based Speech Enhancement

e In recentstudies [1] [2], deep neural networks (DNNSs) have been used to
perform speech enhancement for dual-microphone mobile phones.

e The experimental results show that the DNN-based approaches significantly
outperform several representative traditional algorithms.

[1] I. L&pez-Espejo, et al., “A deep neural network approach for missing-data mask estimation on dual-microphone
smartphones: application to noise-robust speech recognition,” in Advances in Speech and Language Technologies for
Iberian Languages, pp. 119-128. Springer, 2014.

[2] I. Lpez-Espejo, et al., “Deep neural network-based noise estimation for robust asr in dual-microphone
smartphones,” in International Conference on Advances in Speech and Language Technologies for Iberian Languages.

Springer, 2016, pp. 117-127.



Motivations k Convolutional Recurrent Networks

e Motivated by our recent study [3] on convolutional recurrent networks (CRNS),
we propose a novel framework for dual-microphone speech enhancement on
mobile phones.

e The proposed CRN model is a causal system. Moreover, the CRN is
computationally efficient, and thus is amenable to mobile phone applications.

e The proposed approach substantially outperforms a DNN-based method similar
to [1], as well as two traditional methods for speech enhancement.

[3] K. Tan and D. L. Wang, “A convolutional recurrent neural network for real-time speech enhancement,” Proc.

Interspeech, pp. 3229-3233, 2018.
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Algorithm Description k Problem Formulation

e Lety, (k),s,(k)andn, (k) denote noisy speech, clean speech and
background noise, respectively, where m is the channel index.

e The dual-channel signals can be modeled as
y1(k) = s1(k) + ny(k) = s(k) + ny(k)
V2 (k) = s5(k) + ny(k) = s(k) * hyz(k) + ny(k)
where hq, (k) represents the acoustic impulse response from the primary
channel to the secondary channel.

ny (k)

s1(k) /J_\ y1(k)
s(k) Figure 2: lllustration of the

dual-channel signal model.
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Algorithm Description k Intra-Channel and Inter-Channel Features

e LetY; andY, be the short-time Fourier transform (STFT) of the noisy speech
signals at the primary channel and the secondary channel, respectively.

e The intra-channel features, i.e. |Y;| and |Y,|, do not account for inter-channel
correlations.

e Hence, the inter-channel features, i.e. |Y; — Y,| and |Y; + Y, | are additionally
Included, which implicitly incorporate phase correlations between channels.

e The intra-channel and inter-channel features are treated as four different input
channels of the CRN.



Algorithm Description k Training Target

e In this study, we use the phase-sensitive mask (PSM) as the training target,
which incorporates the phase information. It is typically defined as [4]

. |Sl(t,f)|exp(jHSl) . |Sl(tif)| _
PSM(t, f) = Re {lYl(t, f)leXp(i@yl)} AR cos(fs, — 6y.)

where Re{-} computes the real component.

e Once the PSM is estimated, we apply it to the magnitude spectrogram of noisy
speech at the primary channel.

[4] H. Erdogan, J. R. Hershey, S. Watanabe, and J. Le Roux, “Phase-sensitive and recognition-boosted speech
separation using deep recurrent neural networks,” in IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). IEEE, 2015, pp. 708-712.



Algorithm Description k Training Target

e Based on the analysis of the acoustical environment in [5], we assume that the
power level difference (PLD) between the clean speech signals at the two
channels is larger than that between the noise signals.

e Hence, the noisy signal difference between channels, i.e. y; — y,, may have a
higher signal-to-noise ratio (SNR) than y,, and thus have a cleaner phase.

e \We propose to combine the phase of y; — y, with the estimated magnitude to
resynthesize waveforms. Thus the PSM should be redefined as

{5 DI | EAL L,
P T )‘Re{lm,mexp@ " W)

[5] M. Jeub, C. Herglotz, C. Nelke, C. Beaugeant, and P. Vary, “Noise reduction for dual-microphone mobile phones
exploiting power level differences,” in IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2012, pp. 1693-1696.




Convolutional Recurrent Networks

Algorithm Description k

e \We have recently developed a convolutional recurrent network (CRN) for real-

time speech enhancement [6].
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[6] K. Tan and D. L. Wang, “A convolutional recurrent neural network for real-time speech enhancement,” Proc.

Interspeech, pp. 3229-3233, 2018.
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e Corpus: WSJO0 SI-84, including 7138 utterances from 83 (= 77 + 6) speakers.

e \We consider the target clean speech to be the same as the clean speech signal
picked up by the primary microphone (s; = s). The clean speech signal at the
secondary microphone is generated by the acoustic path h,, from the primary
channel to the secondary channel (s, = s * hy,).

e The acoustic path h,, Is modeled as a time-invariant finite impulse response
(FIR) filter, of which the coefficients are estimated by minimizing the mean
squared error (MSE), i.e. E[e?(k)], where

p
e() = 55000 = ) R sk = )
[=0

Here s{"°) and s{"*?) are clean speech signals recorded by a dual-microphone

mobile phone that is mounted on a dummy head in an anechoic environment.



e \We use 6 different mobile phones: 6 different inter-channel acoustic paths (five
for training, one for testing).

e Two different noise fields: diffuse noise and point-source noise.
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Figure 4: Simulation of diffuse noise.




e Training: 10,000 noises from a sound effect library. The SNRs are randomly
sampled from {-5, -4, -3,-2,-1,0, 1, 2, 3, 4, 5} dB. We create 320,000 mixtures
In total.

e Testing: babble and cafeteria noises. SNRs: -5, 0, 5 and 10 dB. We create 150 (=
25 X 6) mixtures for each SNR.

e In close-talk scenarios, the direct-to-reverberant ratio (DRR) of the speech
signal is high, so that the reverberation from it can be omitted.




Table 1: Comparisons of different approaches for diffuse noise.

metrics STOI (in %) PESQ
SNR -5dB 0 dB 5dB 10 dB -5dB 0dB 5dB 10 dB
noisy 57.58 69.66 80.71 89.19 1.49 1.77 2.09 2.43
MMSE 52.88 65.45 76.67 85.74 1.48 1.81 2.15 2.45
MS 54.30 67.05 79.05 87.84 1.49 1.83 2.17 2.47
DNN 80.80 87.07 91.81 95.00 2.18 2.54 2.87 3.18
Prop. 92.52 94.95 96.66 97.88 2.89 3.20 3.48 3.70

Table 2: Comparisons of different approaches for point-source noise.

metrics STOI (in %) PESQ
SNR -5dB 0 dB 5dB 10 dB -5dB 0dB 5dB 10 dB
noisy 57.65 69.82 80.87 89.27 1.51 1.77 2.09 2.42
MMSE 53.08 65.47 76.63 85.83 1.50 1.83 2.15 2.45
MS 54.35 67.42 79.29 87.87 1.51 1.83 2.16 2.45
DNN 80.49 87.04 91.82 95.03 2.16 2.53 2.87 3.18
Prop. 91.81 94.68 96.54 97.83 2.85 3.17 3.45 3.68

MMSE: minimum mean squared error based speech enhancement
MS: minimum statistics

DNN: three hidden layers, (3+1) X 161X 2, 64, 64, 64, 161

CRN (Prop.): encoder, LSTM, decoder
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Table 3: Evaluation of the inter-channels features and the phase
of noisy signal difference between channels.

metrics STOI (in %) PESQ
SNR -5dB 0 dB 5dB 10 dB -5dB 0dB 5dB 10 dB
noisy 57.62 69.74 80.79 89.23 1.50 1.77 2.09 243
(1) 83.67 89.00 93.04 95.79 2.38 2.71 3.02 3.32
(i) 86.75 91.36 94.65 96.84 2.56 2.88 3.21 2.50
(1i1) 88.96 92.44 95.02 96.85 2.65 2.97 3.25 3.50
(iv) 92.17 94.82 96.60 97.86 2.87 3.19 3.47 3.69

(i) intra-channel features + the phase of y4;

(i1) both intra-channel and inter-channel features + the phase of yq;

(ii1) intra-channel features + the phase of y; — y5;

(iv) both intra-channel and inter-channel features + the phase of y; — y5.



e Babble diffuse noise, -5 dB
untrained female speaker:

¢ Unprocessed (dual channels):

¢ Unprocessed (primary channel):
¢ MMSE:

¢ MS:

¢ DNN:

¢ CRN (Prop.):

¢ Clean:




k Demos — Point-Source Noise

e (Cafeteria point-source noise, -5 dB
untrained male speaker:

¢ Unprocessed (dual channels):

¢ Unprocessed (primary channel):
¢ MMSE:

¢ MS:

¢ DNN:

¢ CRN (Prop.):

¢ Clean:
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e \We have proposed a new deep learning based framework for real-time speech
enhancement on dual-microphone mobile phones in a close-talk scenario.

e The proposed framework incorporates a computationally efficient CRN, which
IS trained from both intra-channel and inter-channel features.

e [n addition, we propose to use the phase of noisy signal difference between
channels to resynthesize the waveform.

e The experimental results show that the proposed approach consistently
outperforms a DNN-based method, as well as two traditional speech
enhancement methods.




