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Introduction

* Significant progress has been made on monaural
speech enhancement and multi-talker speaker
separation

— Deep learning and T-F masking based speech enhancement
— Deep clustering (DC), permutation invariant training (PIT)

* Typically estimating real-valued masks for separation
— Using the mixture phase for re-synthesis

— Magnitude estimation can be dramatically improved using
deep learning

* This study investigates magnitude based methods for
phase reconstruction



Motivation - |

Given a C-source time-domain mixture

C
y = z <(©
c=1

And its STFT representation

C C 2@ Geometric
Y — S(C) — A(c)ejgt,f .
t.f E:c=1 t.f §:c=1 L Constraint

Assuming C = 2

Assuming AEC} = AEC}

Is there any closed-form solution for phase
estimation?



Motivation - Il

It is reasonable to say yes as there are two equations with two
unknowns
|V rlcos(4Yyr) = A( )cos(H(l)) + A cos(Q(z)) +«— Real
1Y rlsin(£Y; f) = A( )sm(H(l)) + A sm(H(z)) «— Imaginary
Phase-difference sign cannot be determlned
9}(}) = £Y, ¢ + arccos((|Y; r|* + /T(l) A(Z) )/(2|th|A(1)))
ét(? = £Y, s  arccos((|Y; r|* + A(Z} A(l) )/(2|th|A(2)))
The absolute phase difference can be determined

The potential phase solutions can be narrowed down to only
two candidates ! N

Im | LI:.




Motivation - |l

* Solution: exploit inter T-F unit phase relations
— Group delay
— Instantaneous frequency
— Phase consistency

* Propose three algorithms
— Iterative phase reconstruction

— Group delay based phase reconstruction
— Sign prediction networks



Motivation - IV

e Whatif(C > 27?

— Infinite number of phase
solutions even if all the
magnitudes are known

e Solution: one-vs.-the-rest

— First use a chimera++ network
to resolve the label
permutation problem

— Then train an enhancement
network to further estimate
the magnitudes of source c,
and the remaining sources
combined (—c) for phase
reconstruction



Chimera++ Network

DCloss: Lpcw = |IVVTVY)™Y2 —y@Tu)~tuTv(vTv)-1/2||2
PIT loss: Lp;r = migZEﬂ HIW”(C)®IY| — TAYl(lS(C)|®cos(AS(C) — AY))H
e

1
Chimera++: Lchi++ = MDC,W ~+ (1 — }\)LPIT
4-layer BLSTM with convolutional encoder-decoder structure
DCwW
Txc1z | 4-layer BLSTM -
S1Ex T x1 €Concatenate—-75 +__1_t_:_;!4) xTx1d
1 1.2),(1,0,512 ] |
256 X T x 3 Concatenate 5 4 512) x T x 3¢
[3x3, [1,2)r§1,u], 256 |
128 xT %7 Concatenate {128§+ 256) x T x 7 ¥
| 3 X3,!1|2!r!1lﬂ!, 128 |
:?T 64 % T x 15 Concatenate {ﬁ"-i— 128) xT x 15 ¥ E
% [ 3x3, (1.2?. (L0).64 | ©
= 32 X T x 31 Concatenate (331 64) x Tx 31 ¢ X
[ 3x3,( 1.2;1. (1,0), 32 |
16 xT x 63 Concatenate (g 1 32) x T x 63
I 3x3,(1,2).(1,0), 16 |
6 xTx 127 Concatenate (6416 xTx 127 ¢
[ 3x3,(.D.@A0,.C I
| TXTX129 Loy ‘___\f-’iizgl- e ¥ 3
log(|Y1]) M



DNN Based lterative Phase Reconstruction |

e Using estimated magnitudes and noisy phase to R RO
drive two-source multiple input spectrogram ‘|‘
: [ Softplus
inverse (MISI) A
For k = 1:K do , | Lincar N X 2F |
o 3N (k) = ISTFT(AC, 8 (k — 1)), for ¢’ in {c, =c}; f L)
. o() = v NCOYIRY | BLSTM N X N |
g( ,) =Y ZC’E{C,—lC}S; ( ); +
« 9 (k) = £STFT(5° ) (k) + (k) /2), for ¢’ in {c, =c}; (BISTMF <N |
End DL 5 )

Nog(Iv,1); M7 ; D]
* Insight: the phase-difference signs could be resolved

— The error distribution step can approximately satisfy the
geometric constraint

— Estimated magnitudes are sufficiently accurate

— Only particular sign assignments lead to consistent phase
structure ’



DNN Based Iterative Phase Reconstruction Il

Estimate the Spectral Magnitude Mask (SMM) |

h
- Lf/lréAl(a) - LMSA(O() = Zic'e{c,c}

A~ !/ Y /
V1T RED) — 1M (s ]|,
— Mask values need to be much larger than one

— The two magnitudes can be long enough to support a valid triangle

— Insight: magnitudes by estimated IRM, IBM and PSM cannot support a valid
triangle as the masks sum up to one !

Further train though MISI
Cittc= Y [ISTFTEAC), 8 (K)) — s,
c'e{c,~c}

call)
(1) Jj8,
—"*AI e o

n el . |
(2) J9,;

> 10




Group Delay Based Phase Reconstruction |

 Group delay (GD) is predictable from magnitudes

— Lqpq = > Z | (c) (1 — cos(GD( D _ D(C )))/2
GD1 c'e{c,—c} 4t t,f+1

- Lll\%ﬁz(a)wm = Lysa) T Lep1

* Key idea: find a sign assignment per T-F unit such that the
resulting phase spectrums has GDs similar to the estimated GDs

H(e) p(=e)
R "R, ~nyle) ~pi-e)
(a) i ) (b) + G'ch 'GDL' ‘
‘ T Ll ¥ [ Softplus ] %
N 3% g : A Linear
e a:BE=fsEEE [ Linear N x 2F ] N x2(F—1)
il 30 SR | BLSTMN X N |
3
Bl =8 (| BLSTM F' x N |
T|m;=(s) *

] llog(1v.); 1 ; D]



Group Delay Based Phase Reconstruction Il

At run time, compute absolute phase difference based on the law of
cosines assuming A©), A=) and |Y| form a triangle at each T-F unit

IY|2+A(€)? — 4(=c)?
2|¥|®|AC))

5D = |Aej(§(c )_LY)| = arccos(J ( ), for c"in {c, =c}

Find a sign assignment per T-F unit, g, r € {—1,1}, that maximizes

Jetr - Ger = argmaxz z COS<9(f+1(gtf+1) H(C)(gtf) GD,S;))
gt1, .gtF

=1 c’€{c,~c}

where 9 (gtf) =LY+ gtf5( ) and H(ﬂc)(gtf) =LY 5 — gtfcf(ﬁc)

Can be eff|C|entIy solved using dynamic programming per frame with
time complexity O (2°%F)

Estimated phases are 2Y + g®8<€> and 2Y — §®S(ﬂc)
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Sign Prediction Network |

The GD based method is hard to be trained end-to-end

Predict the sign using DNN
— 0O = 2Y + 5ign®8© Two phases are on different sides
— 009 = 2y —5ign®5C9  of mixture phase
Loss computed on the resulting GD
— Lops = Bereqene 2t 2her 1551111 — cos(8%), — 857 — 6D5)) /2
Loss computed directly on the phase
- Lphase = Zc’e{c,—.c}nls(c )|®(1 o Cos(é(c A )))/2”1 ~(c) A(-E)
R, "R, sign,

Overall loss function
Enh3
n

— Lysatay+epz = Lmsa) T Lep2

[ Linear N x 2F ][ Linear N x F ]

Enh3 _
- LM@A(a)+phase = LMSA(a) + Lphase M
BLSTM N x N
3

| BLSTMF' x N |

iy 13
[og(Iv.]); 117 ; 6D "]



Sign Prediction Network Il

* Train through O or K iterations of MISI

— Starting from estimated magnitude A(©) and estimated phase
6() following Le Roux et al., 2019.

— Time-domain loss

Enh3 _
LMISI—K —

Z liSTET(AC, 9D (K Y) — s,
c'€{c,—c}

— Frequency-domain loss, following Wang et al., 2018

LEnhB
MISI-K—MSA

- 2 sTFT(iSTFT(A(C'),é(C')(K)))‘—|5(C')|

c'€{c,—c}

1
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Experimental Setup

* Open wsj0-2mix and wsjO-3mix
— Speaker-independent
— 30 h training, 10 h validation, 5 h testing

e Evaluation metrics
—SDRi (dB)
—SI-SDRi (dB)
—PESQ



Experimental Results |

* Estimating SMM is more
suitable than estimating PSM
for MISI

* Training through MISI brings
slight improvement on SI-
SDRi, but not on PESQ

— Likely because LEML - yses

time-domain loss

SI-SDRi and PESQ on wsj0-2mix

Enhanced .
Approaches | Models Phase? SI-SDRi| PESQ
Unprocessed - No 0.0 2.01
Chimera++ L ;4. No 11.9 3.12
Lo No 121 | 3.15
+MISI-5 Yes 12.5¢| 3.17
LEthios) No 12.4 || 3.17
Deed leami +MISI-5 Yes 129+ 3.19
Do S, | Mo | 124 || oz
ohase +MISI-5 Yes 12.9+| 3.24
Enhil
reconstruction [PSA(=5.5) No 12.7 3.21
+MISI-5 Yes 13.3+| 3.24
Loens) No 111 || 3.27
+MISI-5 Yes |plddd| 3.439]
+LEnn Yes |%150 | 3.384

MISI—5
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Experimental Results |

Group delay based method is not as

good as MISI

— But gets clear improvement

Enhil
over LMSA(S)

— Phase consistency might be
more important for monaural
phase estimation

Sign prediction net obtains SI-SDRi
similar to MISI

— Avoids STFT/iSTFT iterations

LETLh3
MSA(5)+phase

Enh3
than Liysacsy+ep2

Enh3 Enh3
Lyisi—s—msa better than Ly¢; s

on PESQ, but slightly worse on SI-
SDRI

slightly better

— PESQ is largely computed based

on magnitude

SI-SDRi and PESQ on wsjO-2mix

Enhanced :
Approaches Models Phase? SI-SDRIPESQ
Unprocessed - No 0.0 |2.01
Chimera++ L .. No 11.9 |3.12
Deep learning | &% No mt 11.1 |3.27
based iterative| +MISI-5 Yes || 14.4+]343
phase |, renm Yes 15.0 | 3.38
reconstruction MISI-5 ' '
Group delay
based phase |[L3/ets)+6p1 Yes W 13.6+ 3.39
reconstruction
L5y 4GD? Yes 14.2 | 3.39
Sign LENRS o phase Yes | 14.4+|3.38
prediction +MISI-5 Yes 15.0 |3.44
+LEnRS Yes 15.34| 3.36
Enh3 P |
+ Ly ST _psa Yes 15.2+ 3.4
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Comparison with other studies

e State-of-the-art results were obtained on wsjO0-2mix and
3mix at the time of submission, especially on PESQ

Approaches Wsj0-2mix WsJ0-3mix

SI-SDRI| SDRi | PESQ |SI-SDRI|{SDRI|PESQ

Unprocessed 0.0 0.0 | 2.01 0.0 0.0 | 1.66
DC++ 10.8 - - 7.1 - -

ADANet 10.4 10.8 | 2.82 0.1 94 | 2.16
uPIT-ST - 10.0 - - 1.7 -
Chimera++ (BLSTM) 11.2 11.5 - - - -
+MISI-5 11.5 11.8 - - - -
+WA-MISI-5 12.6 12.9 - - - -
+PhaseBook 12.8 - - - - -

conv-TasNet 146 | 15.0 | 3.25 11.6 [12.0| 2.50

Proposed (Sign prediction net, LEP3 15.3 | 15.6 3.36] 12.1 |12.5| 2.64

Proposed (sign prediction net, LE#3 . 15.2 | 15.4 | 3.45¢ 12.0 |12.3]| 2.77
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Concluding Remarks

* We have proposed three algorithms to resolve the
sign ambiguity in phase estimation

* Deep learning based magnitude estimation can
clearly help phase estimation

* The geometric constraint affords a mechanism to
narrow down the potential solutions of phase,
and could play a fundamental role in future
research on phase estimation
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