Deep Learning Based Phase Reconstruction for Speaker Separation: A Trigonometric Perspective

Zhong-Qiu Wang, Ke Tan, DeLiang Wang

Perception and Neurodynamics Lab

The Ohio State University

Outline

- Introduction
- Iterative Phase Reconstruction
- Group Delay Based Phase Reconstruction
- Sign Prediction Network
- Experiments
- Conclusions

Introduction

- Significant progress has been made on monaural speech enhancement and multi-talker speaker separation
 - Deep learning and T-F masking based speech enhancement
 - Deep clustering (DC), permutation invariant training (PIT)
- Typically estimating real-valued masks for separation
 - Using the mixture phase for re-synthesis
 - Magnitude estimation can be dramatically improved using deep learning
- This study investigates magnitude based methods for phase reconstruction

Motivation - I

• Given a *C*-source time-domain mixture

$$y = \sum_{c=1}^{c} s^{(c)}$$

• And its STFT representation

$$Y_{t,f} = \sum_{c=1}^{C} S_{t,f}^{(c)} = \sum_{c=1}^{C} A_{t,f}^{(c)} e^{j\theta_{t,f}^{(c)}}$$

Geometric Constraint

- Assuming C = 2
- Assuming $\hat{A}_{t,f}^{(c)} = A_{t,f}^{(c)}$

Is there any closed-form solution for phase estimation?

Motivation - II

 It is reasonable to say yes as there are two equations with two unknowns

$$\begin{aligned} |Y_{t,f}|\cos(\angle Y_{t,f}) &= \hat{A}_{t,f}^{(1)}\cos(\hat{\theta}_{t,f}^{(1)}) + \hat{A}_{t,f}^{(2)}\cos(\hat{\theta}_{t,f}^{(2)}) &\longleftarrow \text{Real} \\ |Y_{t,f}|\sin(\angle Y_{t,f}) &= \hat{A}_{t,f}^{(1)}\sin(\hat{\theta}_{t,f}^{(1)}) + \hat{A}_{t,f}^{(2)}\sin(\hat{\theta}_{t,f}^{(2)}) &\longleftarrow \text{Imaginary} \end{aligned}$$

• Phase-difference sign cannot be determined

$$\hat{\theta}_{t,f}^{(1)} = \angle Y_{t,f} \pm \arccos((|Y_{t,f}|^2 + \hat{A}_{t,f}^{(1)^2} - \hat{A}_{t,f}^{(2)^2})/(2|Y_{t,f}|\hat{A}_{t,f}^{(1)}))$$

$$\hat{\theta}_{t,f}^{(2)} = \angle Y_{t,f} \mp \arccos((|Y_{t,f}|^2 + \hat{A}_{t,f}^{(2)^2} - \hat{A}_{t,f}^{(1)^2})/(2|Y_{t,f}|\hat{A}_{t,f}^{(2)}))$$

- The absolute phase difference can be determined
- The potential phase solutions can be narrowed down to only two candidates !

Motivation - III

- Solution: exploit inter T-F unit phase relations
 - Group delay
 - Instantaneous frequency
 - Phase consistency
- Propose three algorithms
 - Iterative phase reconstruction
 - Group delay based phase reconstruction
 - Sign prediction networks

Motivation - IV

- What if *C* > 2 ?
 - Infinite number of phase solutions even if all the magnitudes are known
- Solution: *one-vs.-the-rest*
 - First use a chimera++ network to resolve the label permutation problem
 - Then train an enhancement network to further estimate the magnitudes of source *c*, and the remaining sources combined (¬*c*) for phase reconstruction

Chimera++ Network

- DC loss: $\mathcal{L}_{DC,W} = ||V(V^T V)^{-1/2} U(U^T U)^{-1} U^T V(V^T V)^{-1/2}||_F^2$
- PIT loss: $\mathcal{L}_{PIT} = \min_{\pi \in \Psi} \sum_{c=1}^{C} \left\| \widehat{M}^{\pi(c)} \otimes |Y| T_0^{|Y|} (|S^{(c)}| \otimes \cos(\angle S^{(c)} \angle Y)) \right\|_1$
- Chimera++: $\mathcal{L}_{chi++} = \lambda \mathcal{L}_{DC,W} + (1 \lambda) \mathcal{L}_{PIT}$
- 4-layer BLSTM with convolutional encoder-decoder structure

DNN Based Iterative Phase Reconstruction I

Using estimated magnitudes and noisy phase to drive two-source multiple input spectrogram inverse (MISI)

For k = 1: K do

- $\hat{s}^{(c')}(k) = iSTFT(\hat{A}^{(c')}, \hat{\vartheta}^{(c')}(k-1)), \text{ for } c' \text{ in } \{c, \neg c\};$
- $\varepsilon(k) = y \sum_{c' \in \{c, \neg c\}} \hat{s}^{(c')}(k);$ $\hat{\vartheta}^{(c')}(k) = \angle \text{STFT}(\hat{s}^{(c')}(k) + \varepsilon(k)/2), \text{ for } c' \text{ in } \{c, \neg c\};$
- End

- Insight: the phase-difference signs could be resolved
 - The error distribution step can approximately satisfy the geometric constraint
 - Estimated magnitudes are sufficiently accurate
 - Only particular sign assignments lead to consistent phase structure

DNN Based Iterative Phase Reconstruction II

- Estimate the Spectral Magnitude Mask (SMM) !
 - $\mathcal{L}_{MSA(\alpha)}^{Enh1} = \mathcal{L}_{MSA(\alpha)} = \sum_{c' \in \{c, \neg c\}} \left\| |Y| \otimes T_0^{\alpha}(\hat{R}^{(c')}) T_0^{\alpha|Y|}(|S^{(c')}|) \right\|_{1}$
 - Mask values need to be much larger than one
 - The two magnitudes can be long enough to support a valid triangle
 - Insight: magnitudes by estimated IRM, IBM and PSM cannot support a valid triangle as the masks sum up to one !
- Further train though MISI

$$\mathcal{L}_{MISI-K}^{Enh1} = \sum_{c' \in \{c, \neg c\}} \left\| \text{iSTFT}(\hat{A}^{(c')}, \hat{\vartheta}^{(c')}(K)) - s^{(c')} \right\|_{1}$$

Group Delay Based Phase Reconstruction I

• Group delay (GD) is predictable from magnitudes

$$- GD_{t,f}^{(c)} = \angle e^{j(\angle S_{t,f+1}^{(c)} - \angle S_{t,f}^{(c)})} - \mathcal{L}_{GD1} = \sum_{c' \in \{c, \neg c\}} \sum_{t} \sum_{f=1}^{F-1} |S_{t,f+1}^{(c')}| (1 - \cos(\widehat{GD}_{t,f}^{(c')} - GD_{t,f}^{(c')}))/2, - \mathcal{L}_{MSA(\alpha)+GD1}^{Enh2} = \mathcal{L}_{MSA(\alpha)} + \mathcal{L}_{GD1}$$

 Key idea: find a sign assignment per T-F unit such that the resulting phase spectrums has GDs similar to the estimated GDs

Group Delay Based Phase Reconstruction II

• At run time, compute absolute phase difference based on the law of cosines assuming $\hat{A}^{(c)}$, $\hat{A}^{(\neg c)}$ and |Y| form a triangle at each T-F unit

$$\hat{\delta}^{(c')} = |\angle e^{j(\hat{\theta}^{(c')} - \angle Y)}| = \arccos(\mathcal{T}(\frac{|Y|^2 + \hat{A}^{(c')^2} - \hat{A}^{(\neg c')^2}}{2|Y| \otimes |\hat{A}^{(c')}|})), \text{ for } c' \text{ in } \{c, \neg c\}$$

- Find a sign assignment per T-F unit, $\hat{g}_{t,f} \in \{-1,1\}$, that maximizes $\hat{g}_{t,1}, \dots, \hat{g}_{t,F} = \underset{g_{t,1},\dots,g_{t,F}}{\operatorname{argmax}} \sum_{f=1}^{F-1} \sum_{c' \in \{c,\neg c\}} \cos\left(\hat{\theta}_{t,f+1}^{(c')}(g_{t,f+1}) - \hat{\theta}_{t,f}^{(c')}(g_{t,f}) - \widehat{GD}_{t,f}^{(c')}\right)$ where $\hat{\theta}_{t,f}^{(c)}(g_{t,f}) = \angle Y_{t,f} + g_{t,f}\hat{\delta}_{t,f}^{(c)}$ and $\hat{\theta}_{t,f}^{(\neg c)}(g_{t,f}) = \angle Y_{t,f} - g_{t,f}\hat{\delta}_{t,f}^{(\neg c)}$
- Can be efficiently solved using dynamic programming per frame with time complexity $O(2^2F)$
- Estimated phases are $\angle Y + \hat{g} \otimes \hat{\delta}^{(c)}$ and $\angle Y \hat{g} \otimes \hat{\delta}^{(\neg c)}$

Sign Prediction Network I

- The GD based method is hard to be trained end-to-end
- Predict the sign using DNN
 - $\hat{\theta}^{(c)} = \angle Y + sign \otimes \hat{\delta}^{(c)}$ Two phases are on different sides
 - $\hat{\theta}^{(\neg c)} = \angle Y sign \otimes \hat{\delta}^{(\neg c)} \qquad \text{of mixture phase}$
- Loss computed on the resulting GD

-
$$\mathcal{L}_{GD2} = \sum_{c' \in \{c, \neg c\}} \sum_{t} \sum_{f=1}^{F-1} |S_{t,f+1}^{(c')}| (1 - \cos(\widehat{\theta}_{t,f+1}^{(c')} - \widehat{\theta}_{t,f}^{(c')} - GD_{t,f}^{(c')}))/2$$

• Loss computed directly on the phase

$$- \mathcal{L}_{phase} = \sum_{c' \in \{c, \neg c\}} \left\| |S^{(c')}| \otimes (1 - \cos(\hat{\theta}^{(c')} - \theta^{(c')}))/2 \right|$$

• Overall loss function

$$- \mathcal{L}_{MSA(\alpha)+GD2}^{Enh3} = \mathcal{L}_{MSA(\alpha)} + \mathcal{L}_{GD2}$$

$$- \mathcal{L}_{MSA(\alpha)+phase}^{Enh3} = \mathcal{L}_{MSA(\alpha)} + \mathcal{L}_{phase}$$

Sign Prediction Network II

- Train through 0 or *K* iterations of MISI
 - Starting from estimated magnitude $\hat{A}^{(c)}$ and estimated phase $\hat{\theta}^{(c)}$, following Le Roux *et al.*, 2019.
 - Time-domain loss

$$\mathcal{L}_{MISI-K}^{Enh3} = \sum_{c' \in \{c, \neg c\}} \left\| \text{iSTFT}(\hat{A}^{(c')}, \hat{\vartheta}^{(c')}(K)) - s^{(c')} \right\|_{1}$$

– Frequency-domain loss, following Wang *et al.*, 2018 $\mathcal{L}_{MISI-K-MSA}^{Enh3}$

$$= \sum_{c' \in \{c, \neg c\}} \left\| \left\| \text{STFT}\left(\text{iSTFT}\left(\hat{A}^{(c')}, \hat{\vartheta}^{(c')}(K) \right) \right) \right\| - \left| S^{(c')} \right| \right\|_{1}$$

Experimental Setup

- Open wsj0-2mix and wsj0-3mix
 - Speaker-independent
 - 30 h training, 10 h validation, 5 h testing
- Evaluation metrics
 - –SDRi (dB)
 - SI-SDRi (dB)
 - -PESQ

Experimental Results I

SI-SDRi and PESQ on wsj0-2mix

- Estimating SMM is more suitable than estimating PSM for MISI
- Training through MISI brings slight improvement on SI-SDRi, but not on PESQ
 - Likely because $\mathcal{L}_{MISI-5}^{Enh1}$ uses time-domain loss

Approaches	Models	Enhanced Phase?	SI-SDRi	PESQ				
Unprocessed	-	No	0.0	2.01				
Chimera++	\mathcal{L}_{chi++}	No	11.9	3.12				
Deep learning based iterative phase reconstruction	$\mathcal{L}^{Enh1}_{PSA(0,1)}$	No	12.1	3.15				
	+MISI-5	Yes	12.5	3.17				
	$\mathcal{L}^{Enh1}_{PSA(0,5)}$	No	12.4	3.17				
	+MISI-5	Yes	12.9	3.19				
	$\mathcal{L}^{Enh1}_{PSA(-1,1)}$	No	12.4	3.21				
	+MISI-5	Yes	12.9	3.24				
	$\mathcal{L}^{Enh1}_{PSA(-5,5)}$	No	12.7	3.21				
	+MISI-5	Yes	13.3	3.24				
	$\mathcal{L}^{Enh1}_{MSA(5)}$	No	11.1	3.27				
	+MISI-5	Yes	▶14.4	3.43				
	$+\mathcal{L}_{MISI-5}^{Enh1}$	Yes	15.0	3.38				

Experimental Results II

- Group delay based method is not as good as MISI
 - But gets clear improvement over $\mathcal{L}_{MSA(5)}^{Enh1}$
 - Phase consistency might be more important for monaural phase estimation
- Sign prediction net obtains SI-SDRi similar to MISI
 - Avoids STFT/iSTFT iterations
 - $\mathcal{L}_{MSA(5)+phase}^{Enh3} \text{ slightly better}$ than $\mathcal{L}_{MSA(5)+GD2}^{Enh3}$
- $\mathcal{L}_{MISI-5-MSA}^{Enh3}$ better than $\mathcal{L}_{MISI-5}^{Enh3}$ on PESQ, but slightly worse on SI-SDRi
 - PESQ is largely computed based on magnitude

SI-SDRi and PESQ on wsj0-2mix

Approaches	Models	Enhanced Phase?	SI-SDRi	PESQ
Unprocessed	-	No	0.0	2.01
Chimera++	\mathcal{L}_{chi++}	No	11.9	3.12
Deep learning	$\mathcal{L}^{Enh1}_{MSA(5)}$	No 🗗	11.1	3.27
based iterative	+MISI-5	Yes	14.4	3.43
phase reconstruction	$+\mathcal{L}^{Enh1}_{MISI-5}$	Yes	15.0	3.38
Group delay based phase reconstruction	$\mathcal{L}^{Enh2}_{MSA(5)+GD1}$	Yes	13.6+	3.39
Sign prediction network	$\mathcal{L}^{Enh3}_{MSA(5)+GD2}$	Yes	14.2	3.39
	$\mathcal{L}_{MSA(5)+phase}^{Enh3}$	Yes	14.4	3.38
	+MISI-5	Yes	15.0	3.44
	$+\mathcal{L}^{Enh3}_{WA}$	Yes	14.6	3.36
	$+\mathcal{L}_{MISI-5}^{Enh3}$	Yes	15.3	3.36
	$+\mathcal{L}_{MISI-5-MSA}^{Enh3}$	Yes	15.2	3.45

Comparison with other studies

 State-of-the-art results were obtained on wsj0-2mix and 3mix at the time of submission, especially on PESQ

A mana a sha a	wsj0-2mix			wsj0-3mix		
Approaches	SI-SDRi	SDRi	PESQ	SI-SDRi	SDRi	PESQ
Unprocessed	0.0	0.0	2.01	0.0	0.0	1.66
DC++	10.8	_	-	7.1	-	-
ADANet	10.4	10.8	2.82	9.1	9.4	2.16
uPIT-ST	-	10.0	-	-	7.7	-
Chimera++ (BLSTM)	11.2	11.5	-	-	-	-
+MISI-5	11.5	11.8	-	-	-	-
+WA-MISI-5	12.6	12.9	-	-	-	-
+PhaseBook	12.8	-	-	-	-	-
conv-TasNet	14.6	15.0	3.25	11.6	12.0	2.50
Proposed (Sign prediction net, $\mathcal{L}_{MISI-5}^{Enh3}$)	15.3	15.6	3.36	12.1	12.5	2.64
Proposed (sign prediction net, $\mathcal{L}_{MISI-5-MSA}^{Enh3}$)	15.2	15.4	3.45	12.0	12.3	2.77 <

Concluding Remarks

- We have proposed three algorithms to resolve the sign ambiguity in phase estimation
- Deep learning based magnitude estimation can clearly help phase estimation
- The geometric constraint affords a mechanism to narrow down the potential solutions of phase, and could play a fundamental role in future research on phase estimation

Thanks